A353703 Palindromes (A002113) in A157037.
6, 22, 66, 202, 222, 282, 434, 454, 474, 494, 555, 595, 838, 858, 969, 1001, 1551, 1771, 3333, 3553, 5335, 6006, 6226, 6886, 8778, 9889, 12921, 14541, 15051, 16261, 16761, 17171, 18681, 19491, 20202, 20602, 20802, 20902, 24142, 24242, 24542, 28282, 28482, 30003
Offset: 1
Examples
22 = A002113(12) and 22 = A157037(3), so 22 is a term. 66 = A002113(16) and 22 = A157037(8), so 66 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f:=func
; pal:=func ; [n:n in [2..30003]| pal(n) and IsPrime(Floor(f(n)))]; -
Maple
filter:= proc(n) local t; isprime(n*add(t[2]/t[1], t=ifactors(n)[2])) end proc: digrev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: N:= 100: # for a(1) to a(N) Res:= 6: count:= 1: for d from 2 while count < N do if d::even then m:= d/2; for n from 10^(m-1) to 10^m-1 while count < N do v:= n*10^m + digrev(n); if filter(v) then Res:= Res,v; count:= count+1 fi; od else m:= (d-1)/2; for n from 10^(m-1) to 10^m-1 while count < N do for y from 0 to 9 while count < N do v:= n*10^(m+1)+y*10^m+digrev(n); if filter(v) then Res:= Res,v; count:= count+1 fi; od od: fi od: Res; # Robert Israel, May 09 2023
-
Mathematica
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[30003], PalindromeQ[#] && PrimeQ[d[#]] &] (* Amiram Eldar, May 09 2022 *)
-
PARI
ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok(m) = my(d); isprime(ad(m)) && (d=digits(m)) && (d==Vecrev(d)); \\ Michel Marcus, May 09 2022
-
Python
from itertools import chain, count, islice from sympy import isprime, factorint def A353703_gen(): # generator of terms return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), chain.from_iterable(chain((int((s:=str(d))+s[-2::-1]) for d in range(10**l,10**(l+1))), (int((s:=str(d))+s[::-1]) for d in range(10**l,10**(l+1)))) for l in count(0))) A353703_list = list(islice(A353703_gen(),20)) # Chai Wah Wu, Jun 23 2022
Comments