cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353756 a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Denominator of fraction A062401(n) / A353752(n).

Crossrefs

Cf. also A353806.

Programs

  • PARI
    A062401(n) = eulerphi(sigma(n));
    A353756(n) = { my(f = factor(n), u=prod(k=1, #f~, A062401(f[k, 1]^f[k, 2]))); (u / gcd(A062401(n), u)); };

Formula

a(n) = A353752(n) / A353754(n) = A353752(n) / gcd(A062401(n), A353752(n)).