cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353806 a(n) = A353802(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 16, 1, 1, 1, 1, 1, 1, 1, 112, 1, 1, 49, 13, 45, 1, 1, 1, 7, 16, 1, 5, 1, 1, 1, 16, 1, 1, 1, 1, 7, 64, 1, 1, 112, 1, 49, 16, 1, 7, 1, 1, 1, 1, 9, 784, 1, 1, 5, 720, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 16, 1, 5, 117, 1, 7, 16, 1, 16, 45, 1, 147, 16, 7
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numerator of fraction A353802(n) / A051027(n).

Crossrefs

Cf. A000203, A051027, A353802, A353803, A353804, A353805 (denominators).
Cf. A336547 (positions of 1's), A336548 (positions of terms > 1), see also A353807.
Cf. also A353755, A353756.

Programs

  • PARI
    A051027(n) = sigma(sigma(n));
    A353806(n) = { my(f = factor(n), u=prod(k=1, #f~, A051027(f[k, 1]^f[k, 2]))); (u / gcd(A051027(n), u)); };

Formula

a(n) = A353802(n) / A353804(n) = A353802(n) / gcd(A051027(n), A353802(n)).

A353755 a(n) = A062401(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 7, 1, 1, 3, 1, 2, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numerator of fraction A062401(n) / A353752(n).

Crossrefs

Cf. A336547 (positions of 1's), A336548 (positions of terms > 1).
Cf. also A353805.

Programs

Formula

a(n) = A062401(n) / A353754(n) = A062401(n) / gcd(A062401(n), A353752(n)).

A353805 a(n) = A051027(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 31, 10, 31, 1, 1, 1, 5, 13, 1, 3, 1, 1, 1, 13, 1, 1, 1, 1, 5, 57, 1, 1, 65, 1, 31, 13, 1, 5, 1, 1, 1, 1, 7, 403, 1, 1, 3, 403, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 13, 1, 3, 70, 1, 5, 13, 1, 13, 31, 1, 85, 13, 5, 1, 1, 13
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Denominator of fraction A353802(n) / A051027(n).

Crossrefs

Cf. A000203, A051027, A353802, A353803, A353804, A353806 (numerators).
Positions of 1's is given by the union of A336547 and A353807.
Cf. also A353755, A353756.

Programs

Formula

a(n) = A051027(n) / A353804(n).

A353754 Greatest common divisor of phi(sigma(n)) and Product_{p^e||n} phi(sigma(p^e)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 4, 8, 12, 2, 4, 12, 6, 8, 4, 30, 6, 24, 8, 12, 8, 4, 8, 16, 30, 12, 16, 24, 8, 8, 16, 36, 8, 6, 8, 72, 18, 16, 12, 8, 12, 16, 20, 24, 24, 8, 16, 60, 36, 60, 12, 6, 18, 32, 8, 32, 16, 8, 16, 24, 30, 32, 48, 126, 12, 16, 32, 36, 16, 16, 24, 96, 36, 36, 60, 48, 16, 24, 32, 60, 110, 12, 24, 48, 12, 40
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A062401(n), A353752(n)) = gcd(A062401(n), A353753(n)) = gcd(A353752(n), A353753(n)).
a(n) = A062401(n) / A353755(n) = A353752(n) / A353756(n).
Showing 1-4 of 4 results.