cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A353802 Multiplicative with a(p^e) = sigma(sigma(p^e)).

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 48, 28, 56, 24, 60, 84, 32, 39, 56, 42, 96, 105, 112, 60, 168, 32, 96, 90, 120, 72, 336, 63, 104, 196, 156, 180, 112, 60, 168, 168, 288, 96, 420, 84, 224, 168, 240, 124, 224, 80, 128, 273, 192, 120, 360, 336, 360, 294, 288, 168, 672, 96, 252, 210, 128, 288, 784, 126, 312, 420, 720
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Programs

  • PARI
    A051027(n) = sigma(sigma(n));
    A353802(n) = { my(f = factor(n)); prod(k=1, #f~, A051027(f[k, 1]^f[k, 2])); };

Formula

a(n) = Product_{p^e||n} sigma(sigma(p^e)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.
a(n) = A051027(n) + A353803(n).
a(n) = A353804(n) * A353806(n).

A353806 a(n) = A353802(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 16, 1, 1, 1, 1, 1, 1, 1, 112, 1, 1, 49, 13, 45, 1, 1, 1, 7, 16, 1, 5, 1, 1, 1, 16, 1, 1, 1, 1, 7, 64, 1, 1, 112, 1, 49, 16, 1, 7, 1, 1, 1, 1, 9, 784, 1, 1, 5, 720, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 16, 1, 5, 117, 1, 7, 16, 1, 16, 45, 1, 147, 16, 7
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numerator of fraction A353802(n) / A051027(n).

Crossrefs

Cf. A000203, A051027, A353802, A353803, A353804, A353805 (denominators).
Cf. A336547 (positions of 1's), A336548 (positions of terms > 1), see also A353807.
Cf. also A353755, A353756.

Programs

  • PARI
    A051027(n) = sigma(sigma(n));
    A353806(n) = { my(f = factor(n), u=prod(k=1, #f~, A051027(f[k, 1]^f[k, 2]))); (u / gcd(A051027(n), u)); };

Formula

a(n) = A353802(n) / A353804(n) = A353802(n) / gcd(A051027(n), A353802(n)).

A353755 a(n) = A062401(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 7, 1, 1, 3, 1, 2, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numerator of fraction A062401(n) / A353752(n).

Crossrefs

Cf. A336547 (positions of 1's), A336548 (positions of terms > 1).
Cf. also A353805.

Programs

Formula

a(n) = A062401(n) / A353754(n) = A062401(n) / gcd(A062401(n), A353752(n)).

A353803 a(n) = Product_{p^e||n} sigma(sigma(p^e)) - sigma(sigma(n)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 42, 21, 0, 0, 0, 0, 0, 0, 0, 141, 0, 0, 72, 36, 56, 0, 0, 0, 48, 54, 0, 168, 0, 0, 0, 45, 0, 0, 0, 0, 78, 21, 0, 0, 141, 0, 108, 54, 0, 192, 0, 0, 0, 0, 64, 381, 0, 0, 168, 317, 0, 0, 0, 0, 0, 0, 168, 192, 0, 0, 0, 72, 0, 336, 188, 0, 144, 126, 0, 126, 112
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Cf. A336547 (positions of 0's), A336548 (positions of terms > 0).
Cf. also A353753.

Programs

Formula

a(n) = A353802(n) - A051027(n).

A353804 Greatest common divisor of sigma(sigma(n)) and Product_{p^e||n} sigma(sigma(p^e)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

1, 4, 7, 8, 12, 28, 15, 24, 14, 3, 28, 56, 24, 60, 12, 32, 39, 56, 42, 96, 21, 7, 60, 168, 32, 96, 90, 120, 72, 3, 63, 104, 4, 12, 4, 112, 60, 168, 24, 18, 96, 84, 84, 224, 168, 15, 124, 224, 80, 128, 39, 3, 120, 360, 3, 360, 6, 18, 168, 96, 96, 252, 210, 128, 32, 1, 126, 312, 84, 1, 195, 336, 114, 240, 224, 336
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A051027(n), A353802(n)) = gcd(A051027(n), A353803(n)) = gcd(A353802(n), A353803(n)).

A353807 Numbers k such that A353802(k) / sigma(sigma(k)) is an integer > 1, where A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).

Original entry on oeis.org

1819, 5088, 7215, 7276, 9487, 9523, 11895, 13303, 14235, 16371, 20179, 21079, 21255, 24531, 24751, 24931, 25824, 29104, 30615, 32224, 33855, 36199, 37635, 37948, 38092, 38664, 40443, 40515, 41847, 43831, 44655, 45475, 45695, 45883, 46995, 48043, 48399, 53835, 54015, 54568, 55747, 56899, 56928, 59599, 60495, 61035
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Comments

Numbers k such that A353805(k) = 1, but A353806(k) > 1.

Examples

			A353802(1819) = 10920 = 2*A051027(1819) = 2*5460, therefore 1819 is included as a term.
		

Crossrefs

Programs

Showing 1-6 of 6 results.