A353846 Triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory of length k.
1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 1, 0, 0, 0, 0, 5, 9, 1, 0, 0, 0, 0, 0, 6, 11, 4, 1, 0, 0, 0, 0, 0, 8, 20, 2, 0, 0, 0, 0, 0, 0, 0, 10, 25, 7, 0, 0, 0, 0, 0, 0, 0, 0, 12, 37, 6, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 2 1 0 0 2 2 1 0 0 3 4 0 0 0 0 4 6 1 0 0 0 0 5 9 1 0 0 0 0 0 6 11 4 1 0 0 0 0 0 8 20 2 0 0 0 0 0 0 0 10 25 7 0 0 0 0 0 0 0 0 12 37 6 1 0 0 0 0 0 0 0 0 15 47 13 2 0 0 0 0 0 0 0 0 0 18 67 15 1 0 0 0 0 0 0 0 0 0 0 22 85 25 3 0 0 0 0 0 0 0 0 0 0 0 27 122 26 1 0 0 0 0 0 0 0 0 0 0 0 For example, row n = 8 counts the following partitions (empty columns indicated by dots): . (8) (44) (422) (4211) . . . . (53) (332) (32111) (62) (611) (41111) (71) (2222) (221111) (431) (3221) (521) (3311) (5111) (22211) (311111) (2111111) (11111111)
Crossrefs
Row-sums are A000041.
Column k = 1 is A000009.
Column k = 2 is A237685.
Column k = 3 is A237750.
A005811 counts runs in binary expansion.
A353832 represents the operation of taking run-sums of a partition
A353836 counts partitions by number of distinct run-sums.
A353845 counts partitions whose run-sum trajectory ends in a singleton.
Programs
-
Mathematica
rsn[y_]:=If[y=={},{},NestWhileList[Reverse[Sort[Total/@ Split[Sort[#]]]]&,y,!UnsameQ@@#&]]; Table[Length[Select[IntegerPartitions[n],Length[rsn[#]]==k&]],{n,0,15},{k,0,n}]
Comments