A353933 a(n) is the permanent of the n X n symmetric matrix M(n) whose generic element M[i,j] is equal to the digital root of i*j.
1, 1, 8, 216, 7344, 168183, 7226091, 295259094, 11801772252, 1673511251940, 65568867621336, 2710049208604776, 202103867012027328, 12881755844526953376, 736186737257150962752, 70484099228399057425344, 5507570249593121504026368, 434305172863416192470350848, 122043063804581668929348667392
Offset: 0
Examples
a(7) = 7226091: 1, 2, 3, 4, 5, 6, 7 2, 4, 6, 8, 1, 3, 5 3, 6, 9, 3, 6, 9, 3 4, 8, 3, 7, 2, 6, 1 5, 1, 6, 2, 7, 3, 8 6, 3, 9, 6, 3, 9, 6 7, 5, 3, 1, 8, 6, 4
Programs
-
Mathematica
M[i_, j_]:=If[i*j==0, 0, 1+Mod[i*j-1, 9]]; Join[{1},Table[Permanent[Table[M[i, j], {i, n}, {j, n}]],{n,18}]]
-
PARI
a(n) = matpermanent(matrix(n, n, i, j, (i*j-1)%9+1)); \\ Michel Marcus, May 12 2022
Formula
Sum_{i=1..n} M[n-i+1,i] = A353128(n+1).
Comments