cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354008 Numerators of Cesàro means sequence of A114112.

Original entry on oeis.org

1, 3, 7, 5, 16, 7, 29, 9, 46, 11, 67, 13, 92, 15, 121, 17, 154, 19, 191, 21, 232, 23, 277, 25, 326, 27, 379, 29, 436, 31, 497, 33, 562, 35, 631, 37, 704, 39, 781, 41, 862, 43, 947, 45, 1036, 47, 1129, 49, 1226, 51, 1327, 53, 1432, 55, 1541, 57, 1654, 59, 1771, 61, 1892, 63, 2017, 65
Offset: 1

Views

Author

Bernard Schott, May 13 2022

Keywords

Comments

This sequence lists the numerators of c(n) = (Sum_{k=1..n} A114112(k)) / n. The corresponding denominator is A141310(n-1) (see Example section).
When a sequence u(n) is increasing, then Cesàro means sequence c(n) = (u(1)+...+u(n))/n is also increasing, but the converse is false.
A114112 is such a counterexample.
Proof: A114112 is clearly not increasing; now, the successive arithmetic means c(n) of the first specific terms of the sequence are 1/1, 3/2, 7/3, 10/4, 16/5, 21/6, 29/7, ... so, if m >= 1, c(2m) = (2m+1)/2 and c(2m+1) = m+1 + 1/(2m+1), c(1) = 1. We get c(n) = a(n) / A141310(n-1) for n >= 1.
We have c(2m+1) - c(2m) = 1/(2m+1) + 1/2 > 0 and c(2m+2) - c(2m+1) = (2m-1) / (4m+2) > 0 when m >= 1; hence for m >= 1, c(2m) < c(2m+1) < c(2m+2), and also c(1) = 1 < c(2) = 3/2; QED.

Examples

			Table with the first few terms:
       Indices n        :  1,   2,   3,   4,    5,   6,    7,   8,    9,   10, ...
       A114112(n)       :  1,   2,   4,   3,    6,   5,    8,   7,   10,    9, ...
      Partial sums      :  1,   3,   7,  10,   16,  21,   29,  36,   46,   55, ...
    Cesàro means c(n)   :  1, 3/2, 7/3, 5/2, 16/5, 7/2, 29/7, 9/2, 46/9, 11/2, ...
      Numerator a(n)    :  1,   3,   7,   5,   16,   7,   29,   9,   46,   11, ...
Denominator A141310(n-1):  1,   2,   3,   2,    5,   2,    7,   2,    9,    2, ...
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.

Crossrefs

Programs

  • Mathematica
    s[1] = 1; s[2] = 2; s[n_] := If[OddQ[n], n + 1, n - 1]; m = 100; Numerator[Accumulate[Array[s, m]]/Range[m]] (* Amiram Eldar, May 15 2022 *)
  • PARI
    f(n) = if (n<=2, n, if (n%2, n+1, n-1)); \\ A114112
    a(n) = numerator(sum(k=1, n, f(k))/n); \\ Michel Marcus, May 16 2022
    
  • Python
    from math import gcd
    def A354008(n): return 1 if n == 1 else (k:= (m:=n//2)*(n+1) + (n+1-m)*(n-2*m))//gcd(k,n) # Chai Wah Wu, May 24 2022

Formula

a(1) = 1, then for m >= 1: a(2m+1) = A130883(m+1) and a(2m) = A005408(m) = 2m+1.
G.f.: x*(1 + 3*x + 4*x^2 - 4*x^3 - 2*x^4 + x^5 + x^6)/(1 - x^2)^3. - Stefano Spezia, May 15 2022