A354008 Numerators of Cesàro means sequence of A114112.
1, 3, 7, 5, 16, 7, 29, 9, 46, 11, 67, 13, 92, 15, 121, 17, 154, 19, 191, 21, 232, 23, 277, 25, 326, 27, 379, 29, 436, 31, 497, 33, 562, 35, 631, 37, 704, 39, 781, 41, 862, 43, 947, 45, 1036, 47, 1129, 49, 1226, 51, 1327, 53, 1432, 55, 1541, 57, 1654, 59, 1771, 61, 1892, 63, 2017, 65
Offset: 1
Examples
Table with the first few terms: Indices n : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... A114112(n) : 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, ... Partial sums : 1, 3, 7, 10, 16, 21, 29, 36, 46, 55, ... Cesàro means c(n) : 1, 3/2, 7/3, 5/2, 16/5, 7/2, 29/7, 9/2, 46/9, 11/2, ... Numerator a(n) : 1, 3, 7, 5, 16, 7, 29, 9, 46, 11, ... Denominator A141310(n-1): 1, 2, 3, 2, 5, 2, 7, 2, 9, 2, ...
References
- J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
Links
- Winston de Greef, Table of n, a(n) for n = 1..10000
- ProofWiki, Cesàro mean.
- Wikipedia, Ernesto Cesàro.
- Wikipédia, Lemme de Cesàro (in French).
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Mathematica
s[1] = 1; s[2] = 2; s[n_] := If[OddQ[n], n + 1, n - 1]; m = 100; Numerator[Accumulate[Array[s, m]]/Range[m]] (* Amiram Eldar, May 15 2022 *)
-
PARI
f(n) = if (n<=2, n, if (n%2, n+1, n-1)); \\ A114112 a(n) = numerator(sum(k=1, n, f(k))/n); \\ Michel Marcus, May 16 2022
-
Python
from math import gcd def A354008(n): return 1 if n == 1 else (k:= (m:=n//2)*(n+1) + (n+1-m)*(n-2*m))//gcd(k,n) # Chai Wah Wu, May 24 2022
Formula
G.f.: x*(1 + 3*x + 4*x^2 - 4*x^3 - 2*x^4 + x^5 + x^6)/(1 - x^2)^3. - Stefano Spezia, May 15 2022
Comments