A114112 a(1)=1, a(2)=2; thereafter a(n) = n+1 if n odd, n-1 if n even.
1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1
A141310 The odd numbers interlaced with the constant-2 sequence.
1, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, 2, 15, 2, 17, 2, 19, 2, 21, 2, 23, 2, 25, 2, 27, 2, 29, 2, 31, 2, 33, 2, 35, 2, 37, 2, 39, 2, 41, 2, 43, 2, 45, 2, 47, 2, 49, 2, 51, 2, 53, 2, 55, 2, 57, 2, 59, 2, 61, 2, 63, 2, 65, 2, 67, 2, 69, 2, 71, 2, 73, 2, 75, 2, 77, 2, 79, 2, 81, 2, 83, 2, 85, 2, 87, 2, 89, 2, 91, 2, 93, 2, 95, 2, 97
Offset: 0
Comments
Similarly, the principle of interlacing a sequence and its first differences leads from A000012 and its differences A000004 to A059841, or from A140811 and its first differences A017593 to a sequence -1, 6, 5, 18, ...
If n is even then a(n) = n + 1 ; otherwise a(n) = 2. - Wesley Ivan Hurt, Jun 05 2013
Denominators of floor((n+1)/2) / (n+1), n > 0. - Wesley Ivan Hurt, Jun 14 2013
a(n) is also the number of minimum total dominating sets in the (n+1)-gear graph for n>1. - Eric W. Weisstein, Apr 11 2018
a(n) is also the number of minimum total dominating sets in the (n+1)-sun graph for n>1. - Eric W. Weisstein, Sep 09 2021
Denominators of Cesàro means sequence of A114112, corresponding numerators are in A354008. - Bernard Schott, May 14 2022
Also, denominators of Cesàro means sequence of A237420, corresponding numerators are in A354280. - Bernard Schott, May 22 2022
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Minimum Total Dominating Set.
- Eric Weisstein's World of Mathematics, Sun Graph.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Maple
a:= n-> n+1-(n-1)*(n mod 2): seq(a(n), n=0..96); # Wesley Ivan Hurt, Jun 05 2013
-
Mathematica
Flatten[Table[{2 n - 1, 2}, {n, 40}]] (* Alonso del Arte, Jun 15 2013 *) Riffle[Range[1, 79, 2], 2] (* Alonso del Arte, Jun 14 2013 *) Table[((-1)^n (n - 1) + n + 3)/2, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) Table[Floor[(n + 1)/2]/(n + 1), {n, 0, 20}] // Denominator (* Eric W. Weisstein, Apr 11 2018 *) LinearRecurrence[{0, 2, 0, -1}, {2, 3, 2, 5}, {0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) CoefficientList[Series[(1 + 2 x + x^2 - 2 x^3)/(-1 + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
-
PARI
A141310(n) = if(n%2,2,1+n); \\ (for offset=0 version) - Antti Karttunen, Oct 02 2018
-
PARI
A141310off1(n) = if(n%2,n,2); \\ (for offset=1 version) - Antti Karttunen, Oct 02 2018
-
Python
def A141310(n): return 2 if n % 2 else n + 1 # Chai Wah Wu, May 24 2022
Formula
a(2n) = A005408(n). a(2n+1) = 2.
First differences: a(n+1) - a(n) = (-1)^(n+1)*A109613(n-1), n > 0.
a(n) = 2*a(n-2) - a(n-4). - R. J. Mathar, Feb 23 2009
G.f.: (1+2*x+x^2-2*x^3)/((x-1)^2*(1+x)^2). - R. J. Mathar, Feb 23 2009
From Wesley Ivan Hurt, Jun 05 2013: (Start)
a(n) = n + 1 - (n - 1)*(n mod 2).
a(n) = (n + 1) * (n - floor((n+1)/2))! / floor((n+1)/2)!.
Extensions
Edited by R. J. Mathar, Feb 23 2009
Term a(45) corrected, and more terms added by Antti Karttunen, Oct 02 2018
A381534 A084849 interleaved with positive even numbers.
1, 2, 4, 4, 11, 6, 22, 8, 37, 10, 56, 12, 79, 14, 106, 16, 137, 18, 172, 20, 211, 22, 254, 24, 301, 26, 352, 28, 407, 30, 466, 32, 529, 34, 596, 36, 667, 38, 742, 40, 821, 42, 904, 44, 991, 46, 1082, 48, 1177, 50, 1276, 52
Offset: 1
Comments
To construct the sequence, we start with two 1’s on separate lines:
1,
1,
Next, we zigzag natural numbers between the lines, leaving spaces:
To fill the spaces, we insert the sum of the numbers in the previous column:
1, 2, 3, 7, 5, 16, 7, 29, 9, 46, 11, 67...
1, 2, 4, 4, 11, 6, 22, 8, 37, 10, 56,...
a(n) is the second sequence. The first sequence is A354008(k), for k > 2.
The first sequence is odd numbers interleaved with A130883. (From M. F. Hasler via Seqfan.)
The numbers we find by adding the columns are: 2,4,7,11,16,22,29,37,46,56,67,…. which is A000124 (n >= 1). The sequence is constructed by alternating the even indexed terms of this sequence (1,4,11,22,37,56…) with the numbers (added by “zigzag” to the second row before we add the columns to get the missing numbers); namely the even numbers 2*n (n >= 1). Therefore, the sequence seems to be A000124(2n) (n>=0), interleaved with A005843(n); (n>=1). (From David James Sycamore via Seqfan.)
Examples
A084849(0) = 1, so a(1) = 1. a(2) is the first positive even number, 2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,3,0,-3,0,1},{1,2,4,4,11,6},60] (* Harvey P. Dale, May 09 2025 *)
Formula
G.f.: -x*(-2*x^4+2*x^3-x^2-2*x-1)/(-x^6+3*x^4-3*x^2+1). - Michel Marcus Feb 27 2025
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Python
Formula
Extensions