cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354089 Sum of divisors function applied to Pythagorean prime shift: a(n) = sigma(A348746(n)).

Original entry on oeis.org

1, 4, 6, 13, 14, 24, 8, 40, 31, 56, 12, 78, 18, 32, 84, 121, 30, 124, 20, 182, 48, 48, 24, 240, 183, 72, 156, 104, 38, 336, 32, 364, 72, 120, 112, 403, 42, 80, 108, 560, 54, 192, 44, 156, 434, 96, 48, 726, 57, 732, 180, 234, 62, 624, 168, 320, 120, 152, 60, 1092, 74, 128, 248, 1093, 252, 288, 68, 390, 144, 448, 72
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Inverse Möbius transform of A348746.
Cf. A003973, A354093 for variants.

Programs

  • PARI
    A348746(n) = { my(f=factor(n)); for(k=1,#f~, if(2==f[k,1], f[k,1]=3, if(3==f[k,1], f[k,1]=5, if(1==(f[k,1]%4), for(i=1+primepi(f[k,1]),oo,if(1==(prime(i)%4), f[k,1]=prime(i); break)))))); factorback(f); };
    A354089(n) = sigma(A348746(n));

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A348744(A000720(p)).
a(n) = A000203(A348746(n)).
a(n) = Sum_{d|n} A348746(d).