A354122
Expansion of e.g.f. 1/(1 + log(1 - x))^3.
Original entry on oeis.org
1, 3, 15, 102, 870, 8892, 105708, 1431168, 21722136, 365105928, 6729341832, 134915992560, 2922576142320, 68013701197920, 1692075061072800, 44810389419079680, 1258472984174461440, 37357062009383877120, 1168635883239630120960, 38424619272539153157120
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^3))
-
a(n) = sum(k=0, n, (k+2)!*abs(stirling(n, k, 1)))/2;
A317280
Expansion of e.g.f. 1/(1 - log(1 + x))^2.
Original entry on oeis.org
1, 2, 4, 10, 30, 108, 444, 2112, 11040, 65712, 414816, 2992944, 21876816, 188936928, 1527813216, 15991733376, 133364903040, 1794144752640, 13329036288000, 270750383400960, 1167153128110080, 57074973648030720, -103080839984916480, 17319631144046423040, -171982551742151685120
Offset: 0
-
a:=series(1/(1 - log(1 + x))^2, x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019
-
nmax = 24; CoefficientList[Series[1/(1 - Log[1 + x])^2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] (k + 1)!, {k, 0, n}], {n, 0, 24}]
A354121
Expansion of e.g.f. 1/(1 - log(1 + x))^4.
Original entry on oeis.org
1, 4, 16, 68, 316, 1616, 9080, 55800, 373080, 2699520, 21035040, 175708320, 1566916320, 14862171840, 149429426880, 1587766126080, 17779538050560, 209295747832320, 2583920845209600, 33389139008678400, 450642388471395840, 6342869733912760320
Offset: 0
-
Table[Sum[(k+3)! * StirlingS1[n,k], {k,0,n}]/6, {n,0,20}] (* Vaclav Kotesovec, Jun 04 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x))^4))
-
a(n) = sum(k=0, n, (k+3)!*stirling(n, k, 1))/6;
A382840
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * Stirling1(n,k) * k!.
Original entry on oeis.org
1, 1, 4, 30, 316, 4290, 71268, 1400112, 31750416, 816215760, 23455342560, 745073660496, 25924233481056, 980518650296640, 40054724743501440, 1757539560656401920, 82439565962427760896, 4116529729771939393920, 218017561353648160158720, 12206586491422209675532800
Offset: 0
-
Table[Sum[Binomial[n + k - 1, k] StirlingS1[n, k] k!, {k, 0, n}], {n, 0, 19}]
Table[n! SeriesCoefficient[1/(1 - Log[1 + x])^n, {x, 0, n}], {n, 0, 19}]
Showing 1-4 of 4 results.
Comments