A354280 a(n) is the numerator of Cesàro means sequence c(n) of A237420 when the denominator is A141310(n).
0, 0, 2, 1, 6, 2, 12, 3, 20, 4, 30, 5, 42, 6, 56, 7, 72, 8, 90, 9, 110, 10, 132, 11, 156, 12, 182, 13, 210, 14, 240, 15, 272, 16, 306, 17, 342, 18, 380, 19, 420, 20, 462, 21, 506, 22, 552, 23, 600, 24, 650, 25, 702, 26, 756, 27, 812, 28, 870, 29, 930, 30, 992, 31, 1056, 32, 1122, 33, 1190
Offset: 0
Examples
Table with the first few terms: Indices n : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... A237420(n) : 0, 0, 2, 0, 4, 0, 6, 0, 8, 0, ... Partial sums : 0, 0, 2, 2, 6, 6, 12, 12, 20, 20, ... Cesàro means c(n) : 0/1, 0/2, 2/3, 1/2, 6/5, 2/2, 12/7, 3/2, 20/9, 4/2, ... Numerator a(n) : 0, 0, 2, 1, 6, 2, 12, 3, 20, 4, ... Denominator A141310(n) : 1, 2, 3, 2, 5, 2, 7, 2, 9, 2, ... Irreducible Cesàro mean : 0/1, 0/2, 2/3, 1/2, 6/5, 1/1, 12/7, 3/2, 20/9, 2/1, ...
References
- J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
Links
- ProofWiki, Cesàro mean.
- The MacTutor History of Mathematics archive, Ernesto Cesàro.
- Wikipedia, Ernesto Cesàro.
- Wikipédia, Lemme de Cesàro (in French).
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Mathematica
m = 50; Accumulate[Table[If[OddQ[n], 0, n], {n, 0, 2*m - 1}]] * Flatten[Table[{2*n - 1, 2}, {n, 1, m}]] / Range[2*m] (* Amiram Eldar, Jun 05 2022 *)
-
PARI
c(n) = sum(k=0, n, if (k%2, 0, k))/(n+1); f(n) = if(n%2, 2, 1+n); \\ A141310 a(n) = c(n)*f(n); \\ Michel Marcus, Jun 06 2022
Formula
G.f.: x^2*(2 + x - x^3)/(1 - x^2)^3. - Stefano Spezia, May 23 2022
Comments