A354287
Expansion of e.g.f. 1/(1 - x)^(3/(1 + 3 * log(1-x))).
Original entry on oeis.org
1, 3, 30, 438, 8334, 194580, 5368662, 170591022, 6126386724, 245127214548, 10804866210648, 519910458588576, 27105081897342816, 1521393008601586536, 91445577404393807928, 5858664681621903625368, 398467273528657973600208, 28668189882264862351707504
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(3/(1+3*log(1-x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 3^k*k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v;
A354288
Expansion of e.g.f. (1 + x)^(2/(1 - 2 * log(1+x))).
Original entry on oeis.org
1, 2, 10, 72, 664, 7440, 97712, 1468768, 24825184, 465516672, 9582002688, 214642099584, 5195322070656, 135064965744384, 3752151488840448, 110892824334154752, 3473236656134243328, 114893633354895538176, 4002000861023966189568, 146388324613230926979072
Offset: 0
-
With[{nn=20},CoefficientList[Series[(1+x)^(2/(1-2Log[1+x])),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 13 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((1+x)^(2/(1-2*log(1+x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 1))*binomial(i-1, j-1)*v[i-j+1])); v;
A354291
Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(4 - 3*exp(x)) = e.g.f. for A032033.
Original entry on oeis.org
1, 3, 30, 435, 8211, 190056, 5196099, 163541055, 5815620696, 230350071189, 10048990989747, 478467217544322, 24678559536271581, 1370217125170670367, 81457311857722336614, 5160975525978898855143, 347090708803947931122807, 24690132231344937537382560
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3*(exp(x)-1)/(4-3*exp(x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 3^k*k!*stirling(j, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
Showing 1-3 of 3 results.