cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A327858 Greatest common divisor of the arithmetic derivative and the primorial base exp-function: a(n) = gcd(A003415(n), A276086(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 5, 1, 3, 6, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 10, 1, 1, 1, 10, 15, 3, 1, 1, 1, 1, 1, 14, 1, 6, 5, 1, 21, 2, 1, 1, 1, 1, 3, 3, 25, 1, 7, 14, 15, 10, 7, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 3, 3, 18, 1, 1, 3, 2, 1, 1, 1, 1, 3, 5, 5, 18, 1, 1, 1, 6, 1, 1, 1, 2, 15, 2, 35, 1, 1, 2, 3, 2, 49, 6, 1, 1, 7, 15, 35, 1, 7, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Sequence contains only terms of A048103.
Proof that A046337 gives the positions of even terms: see Charlie Neder's Feb 25 2019 comment in A235992 and recall that A276086 is never a multiple of 4, as it is a permutation of A048103, and furthermore it toggles the parity. See also comment in A327860. - Antti Karttunen, May 01 2022

Crossrefs

Cf. A046337 (positions of even terms), A356311 (positions of 1's), A356310 (their characteristic function).
Cf. also A085731, A324198, A328572 [= gcd(A276086(n), A327860(n))], A345000, A373145, A373843.

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12], f, g}, f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; g[n_] := Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[GCD[f@ #, g@ #] &, 105]] (* Michael De Vlieger, Sep 30 2019 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));

Formula

a(n) = gcd(A003415(n), A276086(n)).
a(p) = 1 for all primes p.
a(n) = A276086(A351234(n)). - Antti Karttunen, May 01 2022
From Antti Karttunen, Dec 05 2022: (Start)
For n >= 2, a(n) = gcd(A003415(n), A328382(n)).
(End)
For n >= 2, a(n) = A358669(n) / A359423(n). For n >= 1, A356299(n) | a(n). - Antti Karttunen, Jan 09 2023
a(n) = gcd(A003415(n), A373849(n)) = gcd(A276086(n), A369971(n)) = A373843(A276086(n)). - Antti Karttunen, Jun 21 & 23 2024

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A346242 Dirichlet inverse of A324198, where A324198(n) = gcd(n, A276086(n)).

Original entry on oeis.org

1, -1, -3, 0, -1, 5, -1, 0, 6, -3, -1, -2, -1, 1, -9, 0, -1, -16, -1, 4, 3, 1, -1, 0, -24, 1, -12, 0, -1, 43, -1, 0, 3, 1, -5, 14, -1, 1, 3, 0, -1, -11, -1, 0, 54, 1, -1, 0, -6, 32, 3, 0, -1, 44, -3, -6, 3, 1, -1, -50, -1, 1, -24, 0, 1, -5, -1, 0, 3, -15, -1, -4, -1, 1, 96, 0, -5, -5, -1, 0, 24, 1, -1, 8, -3, 1, 3, 0, -1
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. A008966 (parity of terms), A005117 (positions of odd terms), A013929 (of even terms), A045344 (of -1's, at least a subset of them), A354810 (of 0's), A354811 (of 1's), A354812 (of 2's), A354813 (of 3's), A354814 (of 4's), A354822 (of -2's).

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
    v346242 = DirInverseCorrect(vector(up_to,n,A324198(n)));
    A346242(n) = v346242[n];

Formula

a(n) = A346243(n) - A324198(n).
From Antti Karttunen, Jun 09 2022: (Start)
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA324198(n/d) * a(d).
For all n >= 1, A000035(a(n)) = A008966(n).
For all n >= 1, a(A045344(n)) = -1.
(End)

A354347 Dirichlet inverse of A345000, where A345000(n) = gcd(A003415(n), A003415(A276086(n))), with A003415 the arithmetic derivative, and A276086 the primorial base exp-function.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, 0, 1, -1, 1, -1, 1, 1, -9, -1, -2, -1, 1, -3, 1, -1, 1, -4, -3, 0, 1, -1, -1, -1, 21, 1, 1, -1, -6, -1, 1, 1, 3, -1, 7, -1, -1, 0, -3, -1, 23, 0, 4, -3, 7, -1, 2, 1, 3, 1, 1, -1, -1, -1, 1, 8, 15, -1, -1, -1, 1, 1, 3, -1, 14, -1, 1, -46, -7, -1, 7, -1, 5, 0, 1, -1, 3, 1, -3, 1, -131
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Crossrefs

Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms), A354815 (positions of 0's), A354816 (of -1's).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    memoA354347 = Map();
    A354347(n) = if(1==n,1,my(v); if(mapisdefined(memoA354347,n,&v), v, v = -sumdiv(n,d,if(dA345000(n/d)*A354347(d),0)); mapput(memoA354347,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA345000(n/d) * a(d).
For all n >= 1, A000035(a(n)) = A353627(n).

A359589 Dirichlet inverse of function f(n) = (-1 + gcd(A003415(n), A276086(n))), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 0, 0, 0, 0, -4, 0, -2, -5, 0, 0, 0, 0, -2, -1, 0, 0, 0, 0, -2, -9, 0, 0, 0, -9, -14, -2, 0, 0, 0, 0, 0, -13, 0, -5, 12, 0, -20, -1, 0, 0, 0, 0, -2, -2, -24, 0, 10, -13, -14, -9, -6, 0, 40, -1, 0, -1, 0, 0, 0, 0, -2, -2, 2, -17, 0, 0, -2, -1, 0, 0, 20, 0, -2, -4, -4, -17, 0, 0, 0, 20, 0, 0, 16, -1, -14, -1, -34
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Crossrefs

Cf. A003415, A276086, A327858, A359595 (parity of terms), A359596 (positions of odd terms).
Agrees paritywise with A358777.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n), A276086(n));
    memoA359589 = Map();
    A359589(n) = if(1==n,1,my(v); if(mapisdefined(memoA359589,n,&v), v, v = -sumdiv(n,d,if(dA327858(n/d)-1)*A359589(d),0)); mapput(memoA359589,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA327858(n/d)-1) * a(d).
a(n) == A358777(n) mod 2.

A354823 Dirichlet inverse of A351083, where A351083(n) = gcd(n, A327860(n)), and A327860 is the arithmetic derivative of the primorial base exp-function.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -7, -5, 0, 1, -1, 1, -1, 13, -3, -1, -1, -2, -1, -7, 13, 1, -1, 9, -24, 1, 0, 7, -1, 7, -1, 33, 1, -15, 9, -6, -1, 1, -11, 27, -1, -25, -1, -1, 4, 1, -1, 7, 48, 24, 1, -1, -1, 2, -3, 59, 1, 1, -1, 19, -1, 1, -12, 23, 1, -1, -1, 33, 1, -23, -1, -2, -1, 1, 52, 1, 7, 23, -1, -67, 0, 1, -1, -25
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2022

Keywords

Crossrefs

Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).

Programs

  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A351083(n) = gcd(n, A327860(n));
    memoA354823 = Map();
    A354823(n) = if(1==n,1,my(v); if(mapisdefined(memoA354823,n,&v), v, v = -sumdiv(n,d,if(dA351083(n/d)*A354823(d),0)); mapput(memoA354823,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA351083(n/d) * a(d).

A354824 Dirichlet inverse of A351084, where A351084(n) = gcd(n, A328572(n)), and A328572 converts the primorial base expansion of n into its prime product form, but with 1 subtracted from all nonzero digits.

Original entry on oeis.org

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, -3, 0, -1, 0, -1, -4, 1, 1, -1, 0, -24, 1, 0, 0, -1, 7, -1, 0, 1, 1, 1, 0, -1, 1, 1, 8, -1, -1, -1, 0, 4, 1, -1, 0, 0, 24, 1, 0, -1, 0, -3, 0, 1, 1, -1, 4, -1, 1, -6, 0, 1, -1, -1, 0, 1, -7, -1, 0, -1, 1, 52, 0, -5, -1, -1, -8, 0, 1, -1, -6, -3, 1, 1, 0, -1, -8, -5, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2022

Keywords

Crossrefs

Programs

  • PARI
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
    A351084(n) = gcd(n, A328572(n));
    memoA354824 = Map();
    A354824(n) = if(1==n,1,my(v); if(mapisdefined(memoA354824,n,&v), v, v = -sumdiv(n,d,if(dA351084(n/d)*A354824(d),0)); mapput(memoA354824,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA351084(n/d) * a(d).

A355692 Dirichlet inverse of A355442, gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.

Original entry on oeis.org

1, -3, -1, 0, -1, 1, -1, 24, -4, 3, -1, 16, -1, 3, -3, -72, -1, 6, -1, 6, -3, 3, -1, -68, 0, 3, -116, 0, -1, 21, -1, 24, 1, 3, -5, 72, -1, 3, -3, -120, -1, 23, -1, 6, -158, 3, -1, 28, 0, -18, -3, 0, -1, 632, -5, -24, -3, 3, -1, -54, -1, 3, 16, 504, -5, -1, -1, 6, -3, 15, -1, -400, -1, 3, -236, 0, 1, 23, -1, 474, 136
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    memoA355692 = Map();
    A355692(n) = if(1==n,1,my(v); if(mapisdefined(memoA355692,n,&v), v, v = -sumdiv(n,d,if(dA355442(n/d)*A355692(d),0)); mapput(memoA355692,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA355442(n/d) * a(d).
Showing 1-7 of 7 results.