A354457 a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n).
6, 36, 240, 2520, 30240, 443520, 6652800, 133056000, 2075673600, 58118860800, 1270312243200, 29640619008000, 844757641728000, 25342729251840000, 810967336058880000, 27978373094031360000, 1077167364120207360000, 43086694564808294400000, 1499416970855328645120000
Offset: 2
Keywords
Examples
From _Jinyuan Wang_, May 31 2022: (Start) For n=2, 6 = 1*6 = 2 * 3. For n=3, 36 = 1*4*9 = 2 * 3 * 6. For n=4, 240 = 1*3*8*10 = 2 * 4 * 5 * 6. For n=5, 2520 = 1*2*9*10*14 = 3 * 4 * 5 * 6 * 7. For n=6, 30240 = 1*2*6*10*14*18 = 3 * 4 * 5 * 7 * 8 * 9. For n=7, 443520 = 1*2*5*9*14*16*22 = 3 * 4 * 6 * 7 * 8 *10 *11. For n=8, 6652800 = 1*2*3*12*14*15*20*22 = 4 * 5 * 6 * 7 * 8 * 9 *10 *11. (End) From _Zhao Hui Du_, May 11 2024: (Start) For n=9, 133056000 = 1*2*3*9*14*16*20*22*25 = 4*5*6*7*8*10*11*12*15. For n=10, 2075673600 = 1*2*3*7*15*16*18*20*22*26 = 4*5*6*8*9*10*11*12*13*14. (End)
Links
- Zhao Hui Du, Table of n, a(n) for n = 2..28
- Shouwen Wang, Discussion on Chinese BBS on A354457
Extensions
a(7)-a(8) from Jinyuan Wang, May 31 2022
a(9)-a(10) from Zhao Hui Du, May 11 2024
a(11)-a(20) from Jon E. Schoenfield, May 11 2024
Comments