cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A354559 The number of terms of A354558 that are <= 10^n.

Original entry on oeis.org

1, 2, 5, 13, 28, 79, 204, 549, 1509, 4231, 12072, 36426, 112589
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Comments

The data is from De Koninck et al. (2013).

Examples

			There is one term <= 10 in A354558, 8, therefore a(1) = 1.
There are 2 terms <= 10^2 in A354558, 8 and 49, therefore a(2) = 2.
		

Crossrefs

Cf. A354558.

Programs

  • Mathematica
    q[n_] := FactorInteger[n][[-1, 2]] > 1; c[s_, n_] := Count[s, _?(# <= n &)]; m = 6; c[Select[Range[10^m], q[#] && q[# + 1] &], #] & /@ (10^Range[m])

Extensions

a(12) from Daniel Suteu, Jun 03 2022
a(13) from Daniel Suteu, Jun 05 2022

A354562 Numbers k such that k and k+1 are both divisible by the cube of their largest prime factor.

Original entry on oeis.org

6859, 11859210, 18253460, 38331320423, 41807225999, 49335445119, 50788425848, 67479324240, 203534609200, 245934780371, 250355343420, 581146348824, 779369813871, 1378677994836, 2152196307260, 2730426690524, 3616995855087, 5473549133744, 6213312123347, 6371699408179, 8817143116903
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Comments

Numbers k such that P(k)^3 | k and P(k+1)^3 | (k+1), where P(k) = A006530(k).
a(1)-a(5) and a(7) are from De Koninck (2009).

Examples

			6859 = 19^3 is a term since P(6859) = 19 and 19^3 | 6859, 6860 = 2^2 * 5 * 7^3, P(6860) = 7 and 7^3 | 6860.
		

Crossrefs

Subsequence of A070003, A354558 and A354561.
Intersection of A354563 and A354564.

Programs

  • Mathematica
    q[n_] := FactorInteger[n][[-1, 2]] > 2; Select[Range[2*10^7], q[#] && q[# + 1] &]
  • Python
    from sympy import factorint
    def c(n): f = factorint(n); return f[max(f)] >= 3
    def ok(n): return n > 1 and c(n) and c(n+1)
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, May 30 2022

Extensions

a(6) and more terms from David A. Corneth, May 30 2022

A354563 Numbers k such that P(k)^2 | k and P(k+1)^3 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.

Original entry on oeis.org

242, 2400, 6859, 10647, 47915, 57121, 344604, 499999, 830465, 1012499, 1431125, 2098853, 2825760, 2829123, 3930399, 5560691, 11859210, 12323584, 13137830, 18253460, 18279039, 21093749, 30664296, 32279841, 33999932, 37218852, 38640401, 38740085, 41485688, 45222737
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Examples

			242 = 2 * 11^2 is a term since P(242) = 11 and 11^2 | 242, 243 = 3^5, P(243) = 3, and 3^3 | 243.
		

Crossrefs

Subsequence of A070003 and A354558.
A354562 is a subsequence.

Programs

  • Mathematica
    p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[10^6], p[#] > 1 && p[# + 1] > 2 &]
  • Python
    from sympy import factorint
    def c(n, e): f = factorint(n); return f[max(f)] >= e
    def ok(n): return n > 1 and c(n, 2) and c(n+1, 3)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022

A354564 Numbers k such that P(k)^3 | k and P(k+1)^2 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.

Original entry on oeis.org

8, 6859, 12167, 101250, 328509, 453962, 482447, 536238, 598950, 5619712, 7170366, 11449008, 11667159, 11859210, 13428095, 15054335, 16541965, 18085704, 18253460, 19450850, 22173969, 23049600, 24039994, 29911714, 30959144, 32580250, 33229625, 44126385, 44321375
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Comments

De Koninck and Moineau (2018) proved that this sequence is infinite assuming the Bunyakovsky conjecture.

Examples

			8 = 2^3 is a term since P(8) = 2 and 2^3 | 8, 9 = 3^2, P(9) = 3, and 3^2 | 9.
		

References

  • Jean-Marie De Koninck and Nicolas Doyon, The Life of Primes in 37 Episodes, American Mathematical Society, 2021, p. 232.

Crossrefs

Subsequence of A070003 and A354558.
A354562 is a subsequence.

Programs

  • Mathematica
    p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[10^6], p[#] > 2 && p[# + 1] > 1 &]
  • Python
    from sympy import factorint
    def c(n, e): f = factorint(n); return f[max(f)] >= e
    def ok(n): return n > 1 and c(n, 3) and c(n+1, 2)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022

A354565 Numbers k such that P(k)^2 | k and P(k+1)^4 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.

Original entry on oeis.org

242, 2400, 57121, 499999, 1012499, 2825760, 2829123, 11859210, 18279039, 21093749, 37218852, 38740085, 70799772, 96393374, 413428949, 642837222, 656356767, 675975026, 1065352364, 1333564323, 1418528255, 2654744949, 5547008142, 8576868299, 9515377949, 10022519999
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Examples

			242 = 2 * 11^2 is a term since P(242) = 11 and 11^2 | 242, 243 = 3^5, P(243) = 3, and 3^4 | 243.
		

Crossrefs

Subsequence of A070003, A354558 and A354563.

Programs

  • Mathematica
    p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[10^6], p[#] > 1 && p[# + 1] > 3 &]
  • Python
    from sympy import factorint
    def c(n, e): f = factorint(n); return f[max(f)] >= e
    def ok(n): return n > 1 and c(n, 2) and c(n+1, 4)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022

A354566 Numbers k such that P(k)^4 | k and P(k+1)^2 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.

Original entry on oeis.org

101250, 11859210, 23049600, 32580250, 131545575, 162364824, 969697050, 1176565754, 1271688417, 1612089680, 1862719859, 2409451520, 2441023914, 3182903731, 3697778084, 4010283270, 4329214629, 6666661950, 6932744126, 7739389944, 9188994752, 11717364285, 17306002674
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Comments

De Koninck and Moineau (2018) proved that this sequence is infinite assuming the Bunyakovsky conjecture.

Examples

			101250 = 2 * 3^4 * 5^4 is a term since P(101250) = 5 and 5^4 | 101250, 101251 = 19 * 73^2, P(101251) = 73, and 73^2 | 101251.
		

References

  • Jean-Marie De Koninck and Nicolas Doyon, The Life of Primes in 37 Episodes, American Mathematical Society, 2021, p. 232.

Crossrefs

Subsequence of A070003, A354558 and A354564.

Programs

  • Mathematica
    p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[3*10^7], p[#] > 3 && p[# + 1] > 1 &]
  • Python
    from sympy import factorint
    def c(n, e): f = factorint(n); return f[max(f)] >= e
    def ok(n): return n > 1 and c(n, 4) and c(n+1, 2)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022

A354560 Numbers k such that k, k+1 and k+2 are all divisible by the square of their largest prime factor.

Original entry on oeis.org

1294298, 9841094, 158385500, 1947793550, 5833093013, 11587121710, 20944167840, 22979821310, 24604784814, 267631935500, 290672026412, 956544588350, 987988937343, 2399283556900, 2816075601855, 4174608151758, 4322550249043, 6789218799999, 10617595679778, 16036630184409
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Comments

Numbers k such that P(k)^2 | k, P(k+1)^2 | (k+1), and P(k+2)^2 | (k+2), where P(k) = A006530(k).
The data is from De Koninck and Moineau (2018).

Examples

			1294298 = 2 * 61 * 103^2 is a term since P(1294298) = 103 and 103^2 | 1294298, 1294299 = 3^4 * 19 * 29^2, P(1294299) = 29 and 29^2 | 1294299, 1294300 = 2^2 * 5^2 * 7 * 43^2, P(1294300) = 43 and 43^2 | 1294300.
		

Crossrefs

Subsequence of A070003 and A354558.

A354567 a(n) is the least number k such that P(k)^n | k and P(k+1)^n | (k+1), where P(k) = A006530(k) is the largest prime dividing k, or -1 if no such k exists.

Original entry on oeis.org

1, 8, 6859, 11859210
Offset: 1

Views

Author

Amiram Eldar, May 30 2022

Keywords

Comments

a(1) = 1 since P(1) = 1 by convention. Without this convention we would have a(1) = 2.
a(5) <= 437489361912143559513287483711091603378 (De Koninck, 2009).

Examples

			a(2) = 8 since 8 = 2^3, P(8) = 2 and 2^2|8, 9 = 3^2, P(9) = 3 and 3^2 | 9, and 8 is the least number with this property.
a(3) = 6859 since 6859 = 19^3, P(6859) = 19 and 19^3 | 6859, 6860 = 2^2 * 5 * 7^3, P(6860) = 7 and 7^3 | 6860, and 6859 is the least number with this property.
		

Crossrefs

Showing 1-8 of 8 results.