A372849
Number of pairs of two disjoint sets of n positive integers more than 1 with product A354697.
Original entry on oeis.org
1, 4, 2, 25, 7, 31, 55, 114, 237, 695, 1666, 2646, 6928, 42986, 79098, 126721, 375348, 667321, 1831927, 7130833, 12067929, 42973699, 105786888, 218943019, 646950177, 1476274502, 3846678717, 14320262729, 46445678648, 91771247330, 182567269925
Offset: 2
A354457
a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n).
Original entry on oeis.org
6, 36, 240, 2520, 30240, 443520, 6652800, 133056000, 2075673600, 58118860800, 1270312243200, 29640619008000, 844757641728000, 25342729251840000, 810967336058880000, 27978373094031360000, 1077167364120207360000, 43086694564808294400000, 1499416970855328645120000
Offset: 2
From _Jinyuan Wang_, May 31 2022: (Start)
For n=2, 6 = 1*6 = 2 * 3.
For n=3, 36 = 1*4*9 = 2 * 3 * 6.
For n=4, 240 = 1*3*8*10 = 2 * 4 * 5 * 6.
For n=5, 2520 = 1*2*9*10*14 = 3 * 4 * 5 * 6 * 7.
For n=6, 30240 = 1*2*6*10*14*18 = 3 * 4 * 5 * 7 * 8 * 9.
For n=7, 443520 = 1*2*5*9*14*16*22 = 3 * 4 * 6 * 7 * 8 *10 *11.
For n=8, 6652800 = 1*2*3*12*14*15*20*22 = 4 * 5 * 6 * 7 * 8 * 9 *10 *11. (End)
From _Zhao Hui Du_, May 11 2024: (Start)
For n=9, 133056000 = 1*2*3*9*14*16*20*22*25 = 4*5*6*7*8*10*11*12*15.
For n=10, 2075673600 = 1*2*3*7*15*16*18*20*22*26 = 4*5*6*8*9*10*11*12*13*14. (End)
Showing 1-2 of 2 results.
Comments