cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354733 a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 64, 168, 464, 1280, 3624, 10304, 29728, 86240, 252480, 743040, 2200640, 6547200, 19571200, 58727680, 176883200, 534476800, 1619912320, 4923070464, 14999764480, 45807916544, 140196076544, 429931051008, 1320905583616, 4065358827520
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 2 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 29}]
    nmax = 29; CoefficientList[Series[(1 - Sqrt[1 - 8 x^2 (1 + x)])/(4 x^2), {x, 0, nmax}], x]
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Nov 05 2023

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 2 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 8 * x^2 * (1 + x))) / (4 * x^2).
a(n) ~ 5^(1/4) * (1 + sqrt(5))^(n+2) / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 04 2022
a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(k+1,n-2*k) * A000108(k). - Seiichi Manyama, Nov 05 2023