A354747 Start with 2*n-1; repeatedly triple and add 2 until reaching a prime. a(n) = number of steps until reaching a prime > 2*n-1, or 0 if no prime is ever reached.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 10, 1, 1, 2, 1, 2, 4, 1, 1, 1, 2, 1, 1, 4, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 2, 3, 3, 5, 1, 1, 1, 2, 3, 9, 1, 1, 2, 1, 2, 4, 1, 2, 1, 6, 1, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 3, 1
Offset: 1
Keywords
Examples
For n = 21: Successively applying the map x -> 3*x+2 to 2*21-1 = 41 yields the sequence 41, 125, 377, 1133, 3401, 10205, 30617, 91853, 275561, 826685, 2480057, reaching the prime 2480057 after 10 steps, so a(21) = 10.
Programs
-
PARI
a(n) = my(x=2*n-1, i=0); while(1, x=3*x+2; i++; if(ispseudoprime(x), return(i)))
-
Python
from sympy import isprime def f(x): return 3*x + 2 def a(n): fn, c = f(2*n-1), 1 while not isprime(fn): fn, c = f(fn), c+1 return c print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jun 06 2022
Comments