A354580
Number of rucksack compositions of n: every distinct partial run has a different sum.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 22, 39, 68, 125, 227, 402, 710, 1280, 2281, 4040, 7196, 12780, 22623, 40136, 71121, 125863, 222616, 393305, 695059, 1227990, 2167059, 3823029, 6743268, 11889431, 20955548, 36920415, 65030404, 114519168, 201612634, 354849227
Offset: 0
The a(0) = 1 through a(5) = 12 compositions:
() (1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3)
(1,1,1) (3,1) (3,2)
(1,2,1) (4,1)
(1,1,1,1) (1,1,3)
(1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,1,1)
These compositions are ranked by
A354581.
A353836 counts partitions by number of distinct run-sums.
A353847 is the composition run-sum transformation.
A353851 counts compositions with all equal run-sums, ranked by
A353848.
Cf.
A143823,
A169942,
A242882,
A325545,
A325680,
A325682,
A325685,
A325687,
A329739,
A351017,
A353849.
-
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}]
A354905
First position of n in A354578, where A354578(k) is the number of integer compositions whose run-sums constitute the k-th composition in standard order (graded reverse-lexicographic, A066099).
Original entry on oeis.org
3, 0, 2, 8, 32, 68, 130, 290, 274, 580, 520, 1298, 2080, 1096, 2082, 4168, 2178, 4164, 4386, 35137, 8328, 8786, 10274, 8772, 16712, 20562, 8712, 16658, 33320, 41554, 33288, 82210, 34856, 66628, 33312, 66642, 34850, 69704, 140306, 133448, 69714, 74308, 133154
Offset: 0
The terms and their corresponding compositions begin:
3: (1,1)
0: ()
2: (2)
8: (4)
32: (6)
68: (4,3)
130: (6,2)
290: (3,4,2)
274: (4,3,2)
580: (3,4,3)
520: (6,4)
1298: (2,4,3,2)
The inverse run-sum compositions for n = 2, 8, 32, 68, 130, 290:
(2) (4) (6) (43) (62) (342)
(11) (22) (33) (223) (332) (3411)
(1111) (222) (4111) (611) (11142)
(111111) (11113) (3311) (32211)
(22111) (22211) (111411)
(1111112) (311112)
(1112211)
This is the position of the first appearance of n in
A354578.
A005811 counts runs in binary expansion.
A353838 ranks partitions with all distinct run-sums, counted by
A353837.
A353851 counts compositions with all equal run-sums, ranked by
A353848.
A353852 ranks compositions with all distinct run-sums, counted by
A353850.
-
nn=1000;
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
antirunQ[y_]:=Length[Split[y]]==Length[y];
q=Table[Length[Select[Tuples[Divisors/@stc[n]],antirunQ]],{n,0,nn}];
w=Last[Select[Table[Take[q+1,i],{i,nn}],Union[#]==Range[Max@@#]&]-1];
Table[Position[w,k][[1,1]]-1,{k,0,Max@@w}]
Showing 1-2 of 2 results.
Comments