cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354975 a(n) = Sum_{i=1..n} (prime(i+n) mod prime(i)).

Original entry on oeis.org

1, 2, 6, 9, 16, 26, 25, 46, 47, 54, 81, 112, 140, 116, 173, 215, 254, 234, 317, 329, 409, 440, 511, 584, 581, 582, 666, 649, 776, 866, 875, 967, 1057, 1152, 1310, 1419, 1246, 1294, 1296, 1551, 1599, 1722, 1970, 2152, 2166, 2154, 2338, 2396, 2523, 2831, 3120, 2867, 3220, 3332, 3274, 3266, 3462
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jun 15 2022

Keywords

Examples

			For n = 3, a(n) = (7 mod 2) + (11 mod 3) + (13 mod 5) = 1+2+3 = 6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
       add(ithprime(n+k) mod ithprime(k),k=1..n)
    end proc:
    map(f, [$1..100]);
  • Mathematica
    a[n_]:=Sum[Mod[Prime[i+n],Prime[i]],{i,n}]; Array[a,57] (* Stefano Spezia, Jun 15 2022 *)
  • PARI
    a(n) = sum(i=1, n, prime(i+n) % prime(i)); \\ Michel Marcus, Jun 15 2022
    
  • Python
    from sympy import prime
    def A354975(n): return sum(prime(i+n) % prime(i) for i in range(1,n+1)) # Chai Wah Wu, Jun 19 2022