A354975 a(n) = Sum_{i=1..n} (prime(i+n) mod prime(i)).
1, 2, 6, 9, 16, 26, 25, 46, 47, 54, 81, 112, 140, 116, 173, 215, 254, 234, 317, 329, 409, 440, 511, 584, 581, 582, 666, 649, 776, 866, 875, 967, 1057, 1152, 1310, 1419, 1246, 1294, 1296, 1551, 1599, 1722, 1970, 2152, 2166, 2154, 2338, 2396, 2523, 2831, 3120, 2867, 3220, 3332, 3274, 3266, 3462
Offset: 1
Keywords
Examples
For n = 3, a(n) = (7 mod 2) + (11 mod 3) + (13 mod 5) = 1+2+3 = 6.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; add(ithprime(n+k) mod ithprime(k),k=1..n) end proc: map(f, [$1..100]);
-
Mathematica
a[n_]:=Sum[Mod[Prime[i+n],Prime[i]],{i,n}]; Array[a,57] (* Stefano Spezia, Jun 15 2022 *)
-
PARI
a(n) = sum(i=1, n, prime(i+n) % prime(i)); \\ Michel Marcus, Jun 15 2022
-
Python
from sympy import prime def A354975(n): return sum(prime(i+n) % prime(i) for i in range(1,n+1)) # Chai Wah Wu, Jun 19 2022