A355007 Triangle read by rows. T(n, k) = n^k * |Stirling1(n, k)|.
1, 0, 1, 0, 2, 4, 0, 6, 27, 27, 0, 24, 176, 384, 256, 0, 120, 1250, 4375, 6250, 3125, 0, 720, 9864, 48600, 110160, 116640, 46656, 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543, 0, 40320, 836352, 6723584, 27725824, 64225280, 84410368, 58720256, 16777216
Offset: 0
Examples
Table T(n, k) begins: [0] 1; [1] 0, 1; [2] 0, 2, 4; [3] 0, 6, 27, 27; [4] 0, 24, 176, 384, 256; [5] 0, 120, 1250, 4375, 6250, 3125; [6] 0, 720, 9864, 48600, 110160, 116640, 46656; [7] 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543;
Programs
-
Maple
seq(seq(n^k*abs(Stirling1(n, k)), k = 0..n), n = 0..9);
-
Mathematica
T[n_, k_] := If[n == k == 0, 1, n^k * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 17 2022 *)
Formula
Sum_{k=0..n} (-1)^k * T(n,k) = A133942(n). - Alois P. Heinz, Mar 30 2023
Conjecture: T(n,k) = A056856(n,k)*n. - R. J. Mathar, Mar 31 2023