cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355007 Triangle read by rows. T(n, k) = n^k * |Stirling1(n, k)|.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 6, 27, 27, 0, 24, 176, 384, 256, 0, 120, 1250, 4375, 6250, 3125, 0, 720, 9864, 48600, 110160, 116640, 46656, 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543, 0, 40320, 836352, 6723584, 27725824, 64225280, 84410368, 58720256, 16777216
Offset: 0

Views

Author

Peter Luschny, Jun 17 2022

Keywords

Examples

			Table T(n, k) begins:
[0] 1;
[1] 0,    1;
[2] 0,    2,     4;
[3] 0,    6,    27,     27;
[4] 0,   24,   176,    384,     256;
[5] 0,  120,  1250,   4375,    6250,    3125;
[6] 0,  720,  9864,  48600,  110160,  116640,   46656;
[7] 0, 5040, 86436, 557032, 1764735, 2941225, 2470629, 823543;
		

Crossrefs

A000142 (column 1), A000407 (row sums), A000312 (main diagonal), A355006.
Cf. A133942.

Programs

  • Maple
    seq(seq(n^k*abs(Stirling1(n, k)), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := If[n == k == 0, 1, n^k * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 17 2022 *)

Formula

Sum_{k=0..n} (-1)^k * T(n,k) = A133942(n). - Alois P. Heinz, Mar 30 2023
Conjecture: T(n,k) = A056856(n,k)*n. - R. J. Mathar, Mar 31 2023