A355110
Expansion of e.g.f. 2 / (3 - 2*x - exp(2*x)).
Original entry on oeis.org
1, 2, 10, 76, 768, 9696, 146896, 2596448, 52449536, 1191944704, 30097334784, 835973778432, 25330620762112, 831497823494144, 29394162040580096, 1113330929935101952, 44979662118902366208, 1930798895281527717888, 87756941394038739828736, 4210241529540625311727616
Offset: 0
-
nmax = 19; CoefficientList[Series[2/(3 - 2 x - Exp[2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
A355112
Expansion of e.g.f. 4 / (5 - 4*x - exp(4*x)).
Original entry on oeis.org
1, 2, 12, 112, 1376, 21056, 386688, 8286720, 202958848, 5592199168, 171203895296, 5765504860160, 211811563929600, 8429932686999552, 361312700788375552, 16592261047219388416, 812749365813312487424, 42299637489384965537792, 2330989060564353634271232
Offset: 0
-
nmax = 18; CoefficientList[Series[4/(5 - 4 x - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A367836
Expansion of e.g.f. 1/(2 - x - exp(3*x)).
Original entry on oeis.org
1, 4, 41, 627, 12759, 324543, 9906453, 352785933, 14358074211, 657405969075, 33444798498657, 1871613674744553, 114259520317835871, 7556674046930376111, 538212358684663414317, 41071433946325564954581, 3343141735414440335583003
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(2-x-Exp[3x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 16 2024 *)
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^j*binomial(i, j)*v[i-j+1])); v;
A355113
Expansion of e.g.f. 5 / (6 - 5*x - exp(5*x)).
Original entry on oeis.org
1, 2, 13, 133, 1779, 29565, 589705, 13728695, 365295695, 10934634985, 363678872325, 13305294463275, 531030788556475, 22960273845453725, 1069101897816615425, 53336480697298243375, 2838300249311563302375, 160480124820425410172625, 9607441647405962075600125
Offset: 0
-
nmax = 18; CoefficientList[Series[5/(6 - 5 x - Exp[5 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 5^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A355114
Expansion of e.g.f. 6 / (7 - 6*x - exp(6*x)).
Original entry on oeis.org
1, 2, 14, 156, 2256, 40416, 869040, 21817440, 626063616, 20210176512, 724888631808, 28599923045376, 1230970377166848, 57397448756994048, 2882187551571941376, 155065468075097960448, 8898907099302329647104, 542609247778976191610880, 35031706496702707368591360
Offset: 0
-
nmax = 18; CoefficientList[Series[6/(7 - 6 x - Exp[6 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 6^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A367852
Expansion of e.g.f. 1/(1 - x + log(1 - 3*x)/3).
Original entry on oeis.org
1, 2, 11, 102, 1320, 21804, 436986, 10283580, 277697304, 8458929792, 286825214592, 10712216384352, 436859348261904, 19313926491051360, 920053448561989296, 46977842202096405024, 2559387620091962391552, 148187802162935002975488
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
Showing 1-6 of 6 results.