A355150 The Hamming weight of A354169, a(n) = A000120(A354169(n)).
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1
Offset: 0
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..20000 (first 4941 terms from N. J. A. Sloane)
- Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, The Binary Two-Up Sequence, arXiv:2209.04108 [math.CO], Sep 11 2022.
- Rémy Sigrist, C++ program
- N. J. A. Sloane, Blog post about the Two-Up sequence, June 13 2022. Mentions A354169.
Programs
-
MATLAB
function a = A355150( max_n ) % Note: a(0) is omitted here because % a(1) will be a(1) in the sequence. a = [1 1 1 1 2]; m = length(a); while length(a) < max_n if (((a((m-3)/2) == 2)&&(a((m-1)/2) == 1)&&(a(m-2) == 1)) ... ||((a((m-3)/2) == 1)&&(a((m-1)/2) == 2))) a(m+1:m+2) = [1 2]; m = m+2; else a(m+1:m+4) = [1 1 1 2]; m = m+4; end end end
Extensions
Edited by N. J. A. Sloane, Jul 10 2022
Comments