A355262 Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1).
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 5, 1, 0, 1, 1, 4, 12, 14, 1, 0, 1, 1, 5, 22, 55, 42, 1, 0, 1, 1, 6, 35, 140, 273, 132, 1, 0, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 0, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 0
Offset: 0
Examples
Array A(n, k) begins: [0] 1, 1, 0, 0, 0, 0, 0, 0, 0, ... A019590 [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 [2] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108 [3] 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, ... A001764 [4] 1, 1, 4, 22, 140, 969, 7084, 53820, 420732, ... A002293 [5] 1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, ... A002294 [6] 1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, ... A002295 [7] 1, 1, 7, 70, 819, 10472, 141778, 1997688, 28989675, ... A002296 [8] 1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, ... A007556 [9] 1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, ... A062994
References
- N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, vol.9 (1791), 243-251.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, (Eqs. 5.70, 7.66, and sec. 7.5, example 5).
Links
- Per Alexandersson, Frether Getachew Kebede, Samuel Asefa Fufa, and Dun Qiu, Pattern-Avoidance and Fuss-Catalan Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.4.2.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 337-338.
- Jean-Luc Baril, Mireille Bousquet-Mélou, Sergey Kirgizov, and Mehdi Naima, The ascent lattice on Dyck paths, arXiv:2409.15982 [math.CO], 2024. See p. 6.
- Jean-Christophe Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers, Chapter 7.
- D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA]; Mathematica J. 2.1 (1992), no. 4, 67-78.
- Donald Knuth's 20th Annual Christmas Tree Lecture, (3/2)-ary Trees, Stanford Online, Video 2014.
- Wojciech Młotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Math. 15:939-955, (2010).
- Wikipedia, Fuss-Catalan number.
Crossrefs
Programs
-
Maple
A := (n, k) -> binomial(k*n + 1, k)/(k*n + 1): for n from 0 to 9 do seq(A(n, k), k = 0..8) od;
-
Mathematica
(* See the Knuth references. In the christmas lecture Knuth has fun calculating the Fuss-Catalan development of Pi and i. *) B[t_, n_] := Sum[Binomial[t k+1, k] z^k / (t k+1), {k, 0, n-1}] + O[z]^n Table[CoefficientList[B[n, 9], z], {n, 0, 9}] // TableForm
Formula
A(n, k) = (1/k!) * Product_{j=1..k-1} (k*n + 1 - j).
A(n, k) = (binomial(k*n, k) + binomial(k*n, k-1)) / (k*n + 1).
Let B(t, z) = Sum_{k>=0} binomial(k*t + 1, k)*z^k / (k*t + 1), then
A(n, k) = [z^k] B(n, z).
Comments