A355200 Numbers k that can be written as the sum of 3 divisors of k (not necessarily distinct).
3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 72, 75, 76, 78, 80, 81, 84, 87, 88, 90, 92, 93, 96, 99, 100, 102, 104, 105, 108, 111, 112, 114, 116, 117, 120, 123, 124, 126, 128, 129, 132, 135
Offset: 1
Examples
6 is in the sequence since it can be written as the sum of 3 of its (not necessarily distinct) divisors: 6 = 1+2+3 = 2+2+2 with 1|6, 2|6, and 3|6.
Links
- Ray Chandler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
Crossrefs
Programs
-
Mathematica
q[n_, k_] := AnyTrue[Tuples[Divisors[n], k], Total[#] == n &]; Select[Range[135], q[#, 3] &] (* Amiram Eldar, Aug 21 2022 *) Table[2n + (Sin[Pi*n/3] + Sin[2*Pi*n/3])/Sqrt[3], {n, 100}] (* Wesley Ivan Hurt, Oct 30 2023 *) CoefficientList[Series[(3 - 2*x + 4*x^2 - 2*x^3 + 3*x^4)/((x - 1)^2*(1 + x^2 + x^4)), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
-
PARI
isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [3,3]); \\ Michel Marcus, Aug 21 2022
-
PARI
is(n) = my(v = [3,4,6]); sum(i = 1, 3, n%v[i] == 0) > 0 \\ David A. Corneth, Oct 08 2022
Formula
a(n + 6) = a(n) + 12. - David A. Corneth, Oct 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - log(3)/4. - Amiram Eldar, Sep 10 2023
From Wesley Ivan Hurt, Oct 30 2023: (Start)
a(n) = 2*n + (sin(Pi*n/3) + sin(2*Pi*n/3))/sqrt(3).
From Wesley Ivan Hurt, Jul 17 2025: (Start)
G.f.: x*(3-2*x+4*x^2-2*x^3+3*x^4)/((x-1)^2*(1+x^2+x^4)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6). (End)
Comments