A355228 a(n) is the smallest integer m such that there exist n of its distinct divisors (d_1, d_2, ..., d_n) with the property that m = d_1 + d_2 + ... + d_n = lcm(d_1, d_2, ..., d_n), or 0 if no such number m exists.
1, 0, 6, 18, 28, 24, 48, 60, 84, 120, 120, 120, 180, 180, 240, 360, 360, 360, 360, 672, 720, 720, 720, 840, 840, 1080, 1260, 1260, 1260, 1680, 1680, 1680, 2160, 2520, 2520, 2520, 2520, 2520, 2520, 3360, 4320, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040
Offset: 1
Keywords
Examples
In the following triangle, the n-th row gives an example of a set of n divisors d_1, ..., d_n of a(n) such that a(n) = d_1 + ... + d_n = lcm(d_1, ..., d_n): . n m d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d10 d11 d12 ----------------------------------------------------------- 1 1 1 2 0 3 6 1 2 3 4 18 1 2 6 9 5 28 1 2 4 7 14 6 24 1 2 3 4 6 8 7 48 1 2 3 4 8 16 24 8 60 1 2 3 4 5 10 15 20 9 84 1 2 3 4 6 7 12 21 28 10 120 1 2 3 4 5 6 15 20 24 40 11 120 1 2 3 4 5 6 8 12 15 24 40 12 120 1 2 3 4 5 6 8 10 12 15 24 30 However, for a given value of a(n) = m, there may be more than one way to choose d_1, ..., d_n. For example, for n=10, a(10)=120 and all seventeen solutions provided by _Jinyuan Wang_ in the Comments section of A081512 are also solutions here.
Links
- Diophante, A1737 - Fidèles au rendez-vous (in French).
Programs
-
PARI
isok(m, n) = {my(d=divisors(m)); if (#d
Michel Marcus, Jun 25 2022
Extensions
More terms from Jinyuan Wang, Jun 25 2022
Comments