A355291 Expansion of e.g.f. exp(exp(x)*(exp(x) + 1) - 2).
1, 3, 14, 81, 551, 4266, 36803, 348543, 3583484, 39652659, 468970211, 5894584812, 78366374813, 1097537989671, 16136598952718, 248309032411485, 3988468487017379, 66715970326561170, 1159712730763363991, 20909709414253764819, 390374806223071148084, 7534929383736826736007
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Vaclav Kotesovec, Asymptotics for a certain group of exponential generating functions, arXiv:2207.10568 [math.CO], Jul 13 2022.
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Exp[Exp[2*x] - 2 + Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]! Table[Sum[Binomial[n, k] * 2^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
PARI
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x)*(exp(x) + 1) - 2))) \\ Michel Marcus, Jun 27 2022
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * 2^k * Bell(k) * Bell(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jul 01 2022
a(n) ~ exp(exp(2*z) + exp(z) - 2 - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) + (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) + 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 17/8 - n/LambertW(n) - sqrt(n/LambertW(n)))). - Vaclav Kotesovec, Jul 08 2022
Comments