cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A355360 G.f. A(x,y) satisfies: x*y*A(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 0, 9, 12, 5, 0, 22, 54, 46, 14, 0, 51, 196, 282, 175, 42, 0, 108, 630, 1360, 1365, 666, 132, 0, 221, 1836, 5635, 8190, 6321, 2541, 429, 0, 429, 4984, 20850, 41405, 45326, 28448, 9724, 1430, 0, 810, 12744, 70737, 184527, 270060, 237209, 125532, 37323, 4862, 0, 1479, 31050, 223652, 745745, 1404102, 1625932, 1193116, 546039, 143650, 16796
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Comments

The main diagonal equals A000108, the Catalan numbers.
Conjectures.
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds.
(C.2) Column 2 equals twice A023005, the number of partitions into parts of 6 kinds.
The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355361(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355362(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355363(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355364(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355365(n) = T(2*n,n) for n >= 0 (central terms of this triangle).

Examples

			G.f.: A(x,y) = 1 + x*y + x^2*(3*y + 2*y^2) + x^3*(9*y + 12*y^2 + 5*y^3) + x^4*(22*y + 54*y^2 + 46*y^3 + 14*y^4) + x^5*(51*y + 196*y^2 + 282*y^3 + 175*y^4 + 42*y^5) + x^6*(108*y + 630*y^2 + 1360*y^3 + 1365*y^4 + 666*y^5 + 132*y^6) + x^7*(221*y + 1836*y^2 + 5635*y^3 + 8190*y^4 + 6321*y^5 + 2541*y^6 + 429*y^7) + x^8*(429*y + 4984*y^2 + 20850*y^3 + 41405*y^4 + 45326*y^5 + 28448*y^6 + 9724*y^7 + 1430*y^8) + x^9*(810*y + 12744*y^2 + 70737*y^3 + 184527*y^4 + 270060*y^5 + 237209*y^6 + 125532*y^7 + 37323*y^8 + 4862*y^9) + x^10*(1479*y + 31050*y^2 + 223652*y^3 + 745745*y^4 + 1404102*y^5 + 1625932*y^6 + 1193116*y^7 + 546039*y^8 + 143650*y^9 + 16796*y^10) + ...
where
x*y*A(x) = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also,
x*y*A(x)*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 2];
n=3: [0, 9, 12, 5];
n=4: [0, 22, 54, 46, 14];
n=5: [0, 51, 196, 282, 175, 42];
n=6: [0, 108, 630, 1360, 1365, 666, 132];
n=7: [0, 221, 1836, 5635, 8190, 6321, 2541, 429];
n=8: [0, 429, 4984, 20850, 41405, 45326, 28448, 9724, 1430];
n=9: [0, 810, 12744, 70737, 184527, 270060, 237209, 125532, 37323, 4862];
n=10: [0, 1479, 31050, 223652, 745745, 1404102, 1625932, 1193116, 546039, 143650, 16796];
n=11: [0, 2640, 72560, 667005, 2784110, 6565030, 9646462, 9242178, 5826171, 2349490, 554268, 58786];
n=12: [0, 4599, 163632, 1892670, 9729720, 28161819, 51126740, 61555824, 50308245, 27806065, 10023948, 2143428, 208012];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal twice A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
The main diagonal equals the Catalan numbers (A000108), where g.f. C(x) = 1 + x*C(x)^2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
		

Crossrefs

Cf. A000108 (main diagonal), A000041, A000716, A023005.
Cf. A355361 (y=1), A355362 (y=2), A355363 (y=3), A355364, A355365.
Cf. A355350 (related table).

Programs

  • PARI
    {T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = polcoeff( x*y*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
    for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) -x*y*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x,y)^n.
(3) x*y*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
(4) A(x,y) = B(x, y*A(x,y)) and A(x, y/B(x,y)) = B(x,y) where x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * B(x,y)^n, and B(x,y) is the g.f. of table A355350.

A355365 Central terms of A355360; a(n) = A355360(2*n,n).

Original entry on oeis.org

1, 3, 54, 1360, 41405, 1404102, 51126740, 1957600876, 77812428681, 3183756066040, 133302637049516, 5687179333193904, 246453229359401883, 10821674290217357756, 480561612716912592360, 21549547977144582750304, 974600584933918611940825, 44409401763058366474029057
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,y],t); for(i=1,2*n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = polcoeff( x*y*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[2*n+1],n,y)}
    for(n=0,30, print1( a(n),", "));

Formula

a(n) ~ c * d^n / n^2, where d = 51.3157915205364... and c = 0.1124829020506... - Vaclav Kotesovec, Mar 19 2023

A355362 G.f. A(x) satisfies: 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 2, 14, 106, 852, 7286, 65216, 603714, 5731930, 55506348, 546091942, 5443033448, 54845812094, 557774491672, 5717718435034, 59017814463718, 612873311614338, 6398538141213916, 67121038262747380, 707114126290890810, 7478082640450505012, 79360375914717108922
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 106*x^3 + 852*x^4 + 7286*x^5 + 65216*x^6 + 603714*x^7 + 5731930*x^8 + 55506348*x^9 + 546091942*x^10 + ...
where
2*x*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,2],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( 2*x*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} A355360(n,k) * 2^k for n >= 0.
G.f. A(x) satisfies:
(1) 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -2*x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) 2*x*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 11.38813717738101179115221618346020026348459... and c = 0.5257715220992591718905720654742321646... - Vaclav Kotesovec, Jul 03 2025

A355363 G.f. A(x) satisfies: 3*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 3, 27, 270, 2928, 33912, 411345, 5159337, 66364326, 870637086, 11604385575, 156697653654, 2139109221960, 29472597414681, 409312118499336, 5723853297702444, 80528723782556475, 1139033786793330429, 16187921479930951917, 231046413762053945958
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 27*x^2 + 270*x^3 + 2928*x^4 + 33912*x^5 + 411345*x^6 + 5159337*x^7 + 66364326*x^8 + 870637086*x^9 + 11604385575*x^10 + ...
where
3*x*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,3],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( 3*x*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} A355360(n,k) * 3^k for n >= 0.
G.f. A(x) satisfies:
(1) 3*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -3*x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) 3*x*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 15.42894386025000237511183711088501557092135179... and c = 0.53592940996364915517082259731565361731654... - Vaclav Kotesovec, Jul 03 2025

A355364 G.f. A(x) satisfies: x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 0, 1, 3, 11, 34, 110, 350, 1147, 3800, 12836, 43929, 152285, 533205, 1883187, 6698612, 23974179, 86258459, 311811314, 1131863444, 4124127216, 15078422405, 55301519095, 203405409935, 750122683729, 2773048061073, 10274442343829, 38147288401915
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Comments

Equals the antidiagonal sums of A355360; a(n) = Sum_{k=0..n} A355360(n-k,k).

Examples

			G.f.: A(x) = 1 + x^2 + 3*x^3 + 11*x^4 + 34*x^5 + 110*x^6 + 350*x^7 + 1147*x^8 + 3800*x^9 + 12836*x^10 + 43929*x^11 + 152285*x^12 + ...
where
x^2*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,0],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x^2*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -x^2*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x^2*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 3.92217771004386918... and c = 0.52890084997249... - Vaclav Kotesovec, Jul 03 2025

A357221 Coefficients in the power series A(x) such that: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.

Original entry on oeis.org

1, 1, 2, 8, 26, 97, 361, 1399, 5532, 22318, 91387, 379037, 1588769, 6720065, 28645624, 122937300, 530748439, 2303446566, 10043922651, 43979954296, 193309569331, 852599816069, 3772220833468, 16737583785420, 74461239372631, 332062396407641, 1484162266154404
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 97*x^5 + 361*x^6 + 1399*x^7 + 5532*x^8 + 22318*x^9 + 91387*x^10 + 379037*x^11 + 1588769*x^12 + ...
such that
x*A(x) = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n,p=1) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n+1)), ceil(sqrt(n+1)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / A(x)^n.
(3) x*A(x) = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
(4) -x*A(x)^2 = Product_{n>=1} (1 - x^(2*n)/A(x)) * (1 - x^(2*n-2)*A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.

A357206 Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 6, 39, 267, 1949, 14927, 118517, 966840, 8055107, 68247637, 586231174, 5093508706, 44685394843, 395287384067, 3521909281230, 31576985230764, 284687856687607, 2579319718212675, 23472206080648463, 214448766193151410, 1966300700448875377, 18088031500652556354
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 39*x^3 + 267*x^4 + 1949*x^5 + 14927*x^6 + 118517*x^7 + 966840*x^8 + 8055107*x^9 + 68247637*x^10 + ...
where
x*A(x)^2 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x*Ser(A)^2 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations.
(1) x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x*A(x)^2 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity.
(4) -x*A(x)^3 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity.

A357207 Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 7, 55, 469, 4307, 41678, 418872, 4330275, 45754091, 491916135, 5364166402, 59186372395, 659556170091, 7412556531714, 83921355689635, 956228695216241, 10957322339242547, 126189988012692329, 1459793848341094130, 16955390069787782159, 197653935181097885580
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 55*x^3 + 469*x^4 + 4307*x^5 + 41678*x^6 + 418872*x^7 + 4330275*x^8 + 45754091*x^9 + 491916135*x^10 + ...
where
x*A(x)^3 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x*Ser(A)^3 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations.
(1) x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x*A(x)^3 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity.
(4) -x*A(x)^4 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity.

A357208 Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 8, 74, 758, 8412, 98605, 1201739, 15075377, 193374064, 2524704727, 33440460233, 448246477551, 6069174992443, 82884604316537, 1140361539606239, 15791577929661603, 219930850717175458, 3078540089119391233, 43287917046150591163, 611156850554916771425
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 74*x^3 + 758*x^4 + 8412*x^5 + 98605*x^6 + 1201739*x^7 + 15075377*x^8 + 193374064*x^9 + 2524704727*x^10 + ...
where
x*A(x)^4 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x*Ser(A)^4 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations.
(1) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x*A(x)^4 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity.
(4) -x*A(x)^5 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity.

A357209 Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 9, 96, 1150, 14981, 206426, 2959249, 43683374, 659531482, 10137150414, 158089344305, 2495255246353, 39785814006395, 639880150931025, 10368454503796731, 169106511176489353, 2773945868018478593, 45734618620228469488, 757469141505480597690
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 96*x^3 + 1150*x^4 + 14981*x^5 + 206426*x^6 + 2959249*x^7 + 43683374*x^8 + 659531482*x^9 + 10137150414*x^10 + ...
where
x*A(x)^5 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x*Ser(A)^5 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations.
(1) x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) -x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x*A(x)^5 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity.
(4) -x*A(x)^6 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity.
Showing 1-10 of 10 results.