cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355395 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 26, 16, 2, 1, 2, 10, 56, 162, 32, 2, 1, 2, 12, 98, 704, 1442, 64, 2, 1, 2, 14, 152, 2050, 15392, 18306, 128, 2, 1, 2, 16, 218, 4752, 84482, 593408, 330626, 256, 2, 1, 2, 18, 296, 9506, 318752, 7221250, 39691136, 8488962, 512, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2022

Keywords

Comments

The Stanley reference below describes a family of binomial posets whose elements are two colored graphs with vertices labeled on [n] and with edges labeled on [k-1]. T(n,k) is the number of elements in an n-interval of such a binomial poset. - Geoffrey Critzer, Aug 21 2023

Examples

			Square array begins:
  1,  1,    1,     1,     1,      1, ...
  2,  2,    2,     2,     2,      2, ...
  2,  4,    6,     8,    10,     12, ...
  2,  8,   26,    56,    98,    152, ...
  2, 16,  162,   704,  2050,   4752, ...
  2, 32, 1442, 15392, 84482, 318752, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323.

Crossrefs

Columns k=0..4 give A040000, A000079, A047863, A135079, A355440.
Main diagonal gives A320287.
Cf. A009999.

Programs

  • PARI
    T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j));

Formula

E.g.f. of column k: Sum_{j>=0} exp(k^j * x) * x^j/j!.
G.f. of column k: Sum_{j>=0} x^j/(1 - k^j * x)^(j+1).
For k>=1, E(x)^2 = Sum_{n>=0} T(n,k)*x^n/B_k(n) where B_k(n) = n!*k^binomial(n,2) and E(x) = Sum_{n>=0} x^n/b_k(n). - Geoffrey Critzer, Aug 21 2023