A355402 Maximal GCD of seven positive integers with sum n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 7, 5, 3, 4, 1, 6, 5, 8, 3, 2, 1, 6, 1, 2, 9, 8, 5, 6, 1, 4, 3, 10, 1, 9, 1, 2, 5, 4, 11, 6, 1, 10, 9, 2, 1, 12, 5, 2, 3, 11, 1, 10, 13, 4, 3, 2, 5, 12
Offset: 7
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..5000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, signum(t), `if`(min(i, t)<1, 1, max(b(n, i-1, t), igcd(b(n-i, min(n-i, i), t-1), i)))) end: a:= n-> `if`(n<7, 0, b(n$2, 7)): seq(a(n), n=7..200); # Alois P. Heinz, Jul 13 2022
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[Min[i, t] < 1, 1, Max[b[n, i - 1, t], GCD[b[n - i, Min[n - i, i], t - 1], i]]]]; a[n_] := If[n < 7, 0, b[n, n, 7]]; Table[a[n], {n, 7, 100}] (* Jean-François Alcover, Jul 24 2022, after Alois P. Heinz *)
-
PARI
a(n) = my(d = divisors(n)); d = select(x->x <= n\7,d); d[#d] \\ David A. Corneth, Jul 24 2022
Comments