A355464
Expansion of Sum_{k>=0} x^k/(1 - k^k * x)^(k+1).
Original entry on oeis.org
1, 2, 4, 17, 210, 9217, 1399298, 811229225, 2071392232962, 20710319937493889, 1137259214532706572162, 255141201504146525745627265, 348787971214016591166179037803522, 2262996819897931095524655885144485185409
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^k*x)^(k+1)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, exp(k^k*x)*x^k/k!)))
-
a(n) = sum(k=0, n, k^(k*(n-k))*binomial(n, k));
A360934
Expansion of e.g.f. Sum_{k>=0} exp((4^k - 1)*x) * x^k/k!.
Original entry on oeis.org
1, 1, 7, 73, 1711, 75121, 6743287, 1169659513, 412296162271, 284887781497441, 400134611520973927, 1108533158650520901673, 6238465090832886119430031, 69421876683500992783472318161, 1567475216919199483376363835235927
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((4^k-1)*x)*x^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(4^k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (4^k-1)^(n-k)*binomial(n, k));
A355395
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 26, 16, 2, 1, 2, 10, 56, 162, 32, 2, 1, 2, 12, 98, 704, 1442, 64, 2, 1, 2, 14, 152, 2050, 15392, 18306, 128, 2, 1, 2, 16, 218, 4752, 84482, 593408, 330626, 256, 2, 1, 2, 18, 296, 9506, 318752, 7221250, 39691136, 8488962, 512, 2
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
2, 4, 6, 8, 10, 12, ...
2, 8, 26, 56, 98, 152, ...
2, 16, 162, 704, 2050, 4752, ...
2, 32, 1442, 15392, 84482, 318752, ...
- R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323.
-
T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j));
Showing 1-3 of 3 results.
Comments