cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A355464 Expansion of Sum_{k>=0} x^k/(1 - k^k * x)^(k+1).

Original entry on oeis.org

1, 2, 4, 17, 210, 9217, 1399298, 811229225, 2071392232962, 20710319937493889, 1137259214532706572162, 255141201504146525745627265, 348787971214016591166179037803522, 2262996819897931095524655885144485185409
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^k*x)^(k+1)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, exp(k^k*x)*x^k/k!)))
    
  • PARI
    a(n) = sum(k=0, n, k^(k*(n-k))*binomial(n, k));

Formula

E.g.f.: Sum_{k>=0} exp(k^k * x) * x^k/k!.
a(n) = Sum_{k=0..n} k^(k*(n-k)) * binomial(n,k).

A360934 Expansion of e.g.f. Sum_{k>=0} exp((4^k - 1)*x) * x^k/k!.

Original entry on oeis.org

1, 1, 7, 73, 1711, 75121, 6743287, 1169659513, 412296162271, 284887781497441, 400134611520973927, 1108533158650520901673, 6238465090832886119430031, 69421876683500992783472318161, 1567475216919199483376363835235927
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((4^k-1)*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(4^k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (4^k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - (4^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (4^k - 1)^(n-k) * binomial(n,k).

A355395 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 26, 16, 2, 1, 2, 10, 56, 162, 32, 2, 1, 2, 12, 98, 704, 1442, 64, 2, 1, 2, 14, 152, 2050, 15392, 18306, 128, 2, 1, 2, 16, 218, 4752, 84482, 593408, 330626, 256, 2, 1, 2, 18, 296, 9506, 318752, 7221250, 39691136, 8488962, 512, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2022

Keywords

Comments

The Stanley reference below describes a family of binomial posets whose elements are two colored graphs with vertices labeled on [n] and with edges labeled on [k-1]. T(n,k) is the number of elements in an n-interval of such a binomial poset. - Geoffrey Critzer, Aug 21 2023

Examples

			Square array begins:
  1,  1,    1,     1,     1,      1, ...
  2,  2,    2,     2,     2,      2, ...
  2,  4,    6,     8,    10,     12, ...
  2,  8,   26,    56,    98,    152, ...
  2, 16,  162,   704,  2050,   4752, ...
  2, 32, 1442, 15392, 84482, 318752, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323.

Crossrefs

Columns k=0..4 give A040000, A000079, A047863, A135079, A355440.
Main diagonal gives A320287.
Cf. A009999.

Programs

  • PARI
    T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j));

Formula

E.g.f. of column k: Sum_{j>=0} exp(k^j * x) * x^j/j!.
G.f. of column k: Sum_{j>=0} x^j/(1 - k^j * x)^(j+1).
For k>=1, E(x)^2 = Sum_{n>=0} T(n,k)*x^n/B_k(n) where B_k(n) = n!*k^binomial(n,2) and E(x) = Sum_{n>=0} x^n/b_k(n). - Geoffrey Critzer, Aug 21 2023
Showing 1-3 of 3 results.