A357078 Triangle read by rows. The partition transform of A355488, which are the alternating row sums of the number of permutations of [n] with k components (A059438).
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 8, 4, 0, 1, 0, 48, 16, 6, 0, 1, 0, 328, 100, 24, 8, 0, 1, 0, 2560, 688, 156, 32, 10, 0, 1, 0, 22368, 5376, 1080, 216, 40, 12, 0, 1, 0, 216224, 46816, 8456, 1504, 280, 48, 14, 0, 1, 0, 2291456, 450240, 73440, 11808, 1960, 348, 56, 16, 0, 1
Offset: 0
Examples
Triangle T(n, k) starts: [Row sums] [0] 1; [1] [1] 0, 1; [1] [2] 0, 0, 1; [1] [3] 0, 2, 0, 1; [3] [4] 0, 8, 4, 0, 1; [13] [5] 0, 48, 16, 6, 0, 1; [71] [6] 0, 328, 100, 24, 8, 0, 1; [461] [7] 0, 2560, 688, 156, 32, 10, 0, 1; [3447] [8] 0, 22368, 5376, 1080, 216, 40, 12, 0, 1; [29093] [9] 0, 216224, 46816, 8456, 1504, 280, 48, 14, 0, 1; [273343]
Links
- Peter Luschny, The P-transform.
Programs
-
SageMath
from functools import cache def PartTrans(dim, f): X = var(['x' + str(i) for i in range(dim + 1)]) @cache def PCoeffs(n: int, k: int): R = PolynomialRing(ZZ, X[1: n - k + 2], n - k + 1, order='lex') if k == 0: return R(k^n) return R(sum(PCoeffs(n - j, k - 1) * f(j) for j in range(1, n - k + 2))) return [[PCoeffs(n, k) for k in range(n + 1)] for n in range(dim)] def A357078_triangle(dim): A = ZZ[['t']]; g = A([0] + [factorial(n) for n in range(1, 30)]).O(dim+2) return PartTrans(dim, lambda n: list(g / (1 + 2 * g))[n]) A357078_triangle(9)
Comments