cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A355952 Column 0 of the irregular triangle A355588.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 7, 55, 11, 5005, 5005, 5005, 5005, 85085, 85085, 323323, 323323, 46189, 46189, 437437, 572033, 185910725, 185910725, 26558675, 185910725, 5391411025, 5391411025, 1453336885, 43332575, 4775249765, 15193976525, 6685349671, 283758475
Offset: 0

Views

Author

Hugo Pfoertner, Jul 21 2022

Keywords

Comments

a(n) are the denominators v in the representation R = s/t - (2*sqrt(3)/Pi)*u/v of the resistance between two nodes with distance n on the same grid line in an infinite triangular lattice of one-ohm resistors. The corresponding denominators are A355951. See there for more information, e.g., how to determine s/t.

Crossrefs

Cf. A355585, A355588, A355951 (numerators).

Programs

A355585 T(j,k) are the numerators s in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.

Original entry on oeis.org

0, 1, 8, -2, 27, -5, 928, -70, 16, 11249, -2671, 123, 46872, -34354, 5992, -438, 1792225, -445535, 28075, -10303, 23152256, -5824226, 1168304, -178754, 38336, 100685835, -25547957, 5343755, -885717, 101355, 3970817992, -338056246, 72962904, -12914726, 1825464, -386166
Offset: 0

Views

Author

Hugo Pfoertner, Jul 09 2022

Keywords

Comments

The distance vector (j,k) is defined in an oblique coordinate system with an angle of 120 degrees between the axes, see e.g. A307012.
Atkinson and Steenwijk (1999) (see links in A211074) provided a generalization of the method used to calculate the resistance between two arbitrary nodes in an infinite square lattice of one-ohm resistors to infinite triangular lattices. Similar to the square lattice, the integral describing the resistance distance between nodes can exactly be represented by an expression of the form given in the name of this sequence with integer coefficients. Atkinson and Steenwijk, page 489, provided results for j <= 3 found by evaluation of the integral (17) (given below) and application of Mathematica's "Simplify" function.
R(j,k) = (1/Pi) * Integral_{y=0..Pi/2} (1 - exp(-|j-k|*x)*cos((j+k)*y)) / (sinh(x)*cos(y)) dy, with x = arccosh(2/cos(y)-cos(y)).
It would be useful to know whether, since the publication cited, a recurrence analogous to that known for the square lattice (used in A355565) for determining the coefficients has also been found for the triangular lattice.
The results in this sequence were found by systematic parameter variation of u and v and continued fraction expansion of the difference from the exact value of the integral for the resistance distance to determine s/t.

Examples

			The triangle begins:
          0;
          1;
          8,        -2;
         27,        -5;
        928,       -70,      16;
      11249,     -2671,     123;
      46872,    -34354,    5992,    -438;
    1792225,   -445535,   28075,  -10303;
   23152256,  -5824226, 1168304, -178754,  38336;
  100685835, -25547957, 5343755, -885717, 101355;
. The combined triangles used to calculate the resistances are:
   \ j                0              |                 1               |
   k\---------- s/t ----------- u/v -|----------- s/t ----------- u/v -|
   0|           0/1             0/ 1 |             .               .   |
   1|           1/3             0/ 1 |             .               .   |
   2|           8/3            -2/ 1 |           -2/3             1/ 1 |
   3|          27/1           -24/ 1 |           -5/1             5/ 1 |
   4|         928/3          -280/ 1 |          -70/1            64/ 1 |
   5|       11249/3         -3400/ 1 |        -2671/3           808/ 1 |
   6|       46872/1       -212538/ 5 |       -34354/3         51929/ 5 |
   7|     1792225/3      -2708944/ 5 |      -445535/3        673429/ 5 |
   8|    23152256/3    -244962336/35 |     -5824226/3      61623224/35 |
   9|   100685835/1   -3195918288/35 |    -25547957/1     810930216/35 |
  10|  3970817992/3  -42013225014/35 |   -338056246/1    2146081719/ 7 |
  11| 52514317745/3 -111125508824/ 7 | -13481564911/3  142641647567/35 |
.
continued
   \ j             2              |               3            |
   k\-------- s/t ---------- u/v -|--------- s/t -------- u/v -|
   4|        16/1          -14/ 1 |           .            .   |
   5|       123/1         -111/ 1 |           .            .   |
   6|      5992/3        -9054/ 5 |       -438/1       1989/5  |
   7|     28075/1      -127303/ 5 |     -10303/3      15576/5  |
   8|   1168304/3    -12361214/35 |    -178754/3    1891328/35 |
   9|   5343755/1   -169618717/35 |    -885717/1   28113999/35 |
  10|  72962904/1  -2315951182/35 |  -12914726/1   81986531/ 7 |
  11| 993810715/1 -31545031729/35 | -184858117/1 5867671888/35 |
.
continued
   \ j           4             |             5           |
   k\------- s/t -------- u/v -|------- s/t ------- u/v -|
   8|    38336/3    -405592/35 |         .           .   |
   9|   101355/1   -3217136/35 |         .           .   |
  10|  1825464/1  -57942922/35 |  -386166/1  12257507/35 |
  11| 28123355/1 -892677136/35 | -3085317/1  97932579/35 |
.
Using the terms for (j,k) = (10,5) with {s, t, u, v} = {-386166, 1, 12257507, 35} the resistance is R = T(10,5)/A355586(10,5) + (2*sqrt(3)/Pi) * A355587(10,5)/A355588(10,5) = -386166/1 + (2*sqrt(3)/Pi)*12257507/35 = 0.731139136228538824636... . This equals the integral for the resistance distance R(j,k) after substitution of j=10 and k=5.
		

References

  • See A211074 for more references and links (with alternatives).

Crossrefs

A355586 are the corresponding denominators t.
A355587 and A355588 are u and v.
Cf. A307012 (discussion of oblique coordinate system).
Cf. A084768 (when divided by 3 apparently gives the difference between successive values of s/t in column 0).
Cf. A355565, A355566, A355567 (similar problem for the square lattice).

Programs

  • PARI
    Rtri(n,p)={my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
    searchr (target, maxn=1000000, maxd=10, maxrat=1000, minn=0, mind=1) = {my (Rcons=2*sqrt(3)/Pi, delta=oo); for (d=mind, maxd, my(PP=Rcons/d); for (nn=minn, maxn, foreach ([-nn,nn], n, my (P=PP*n, T=target-P, Q = bestappr(T,maxrat), D=abs(target-P-Q)); if(D
    				
  • PARI
    \\ Alternative method using a recurrence; calculates triangle of s/t
    jk(j,k) = {my(jj=j,kk=k); if(k<1,jj=j-k+1;kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj,kk]};
    D(n) = subst(pollegendre(n), 'x, 7);
    ST(nend) = {my(nmax=nend+1, N=matrix(nmax,(nmax+1)\2)); for (n=2, nmax, N[n,1]=(1/3) * sum(k=0,n-2,D(k))); for (n=3, nmax, N[n,2] = (1/2)*(6*N[n-1,1] - 2*N[jk(n-1,2)[1],jk(n-1,2)[2]] - N[n-2,1] - N[n,1])); for (n=5, nmax, for (m=3, (n+1)\2, N[n,m] = 6*N[jk(n-1,m-1)[1],jk(n-1,m-1)[2]] - N[jk(n-1,m)[1],jk(n-1,m)[2]] - N[jk(n-2,m-1)[1],jk(n-2,m-1)[2]] - N[jk(n-2,m-2)[1],jk(n-2,m-2)[2]] - N[jk(n-1,m-2)[1],jk(n-1,m-2)[2]] - N[jk(n,m-1)[1],jk(n,m-1)[2]] )); N};
    ST(11)

Formula

T(n,0)/A355586(n,0) = T(n-1,0)/A355586(n-1,0) + A084768(n-1)/3 for n>=1 (conjectured).

A355565 T(j,k) are the numerators s in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.

Original entry on oeis.org

0, 1, 0, 2, -1, 0, 17, -4, 1, 0, 40, -49, 6, -1, 0, 401, -140, 97, -8, 1, 0, 1042, -1569, 336, -161, 10, -1, 0, 11073, -4376, 4321, -660, 241, -12, 1, 0, 29856, -48833, 13342, -9681, 1144, -337, 14, -1, 0, 325441, -136488, 160929, -33188, 18929, -1820, 449, -16, 1, 0
Offset: 0

Views

Author

Hugo Pfoertner, Jul 07 2022

Keywords

Comments

The recurrence given by Cserti (2000), page 5, (32) is used to calculate the resistance between two arbitrarily spaced nodes in an infinite square lattice whose edges are replaced by one-ohm resistors. The lower triangle, including the diagonal, in Table I of Atkinson and Steenwijk (1999), page 487, is reproduced. The solution to the resistor grid problem shown in the xkcd Web Comic #356 "Nerd Sniping", provided in A211074, is the special case (j,k) = (2,1).
Using the terms of A280079 and A280317 as pairs of grid indices leads to strictly increasing resistances, i.e., R(A280079(m),A280317(m)) > R(A280079(i),A280317(i)) for m > i. This implies that for grid points on the same radius the resistance increases with the circumferential angle between 0 and Pi/4. The further dependence of the resistance along the circumferential angle with a fixed radius results from symmetry. - Hugo Pfoertner, Aug 31 2022

Examples

			The triangle begins:
     0;
     1,     0;
     2,    -1,   0;
    17,    -4,   1,    0;
    40,   -49,   6,   -1,  0;
   401,  -140,  97,   -8,  1,  0;
  1042, -1569, 336, -161, 10, -1, 0
.
The combined triangles used to calculate the resistances are:
  \  k      0       |        1        |       2       |      3       |
   \    s/t     u/v |    s/t    u/v   |  s/t      u/v |  s/t    u/v  |
  j \---------------|-----------------|---------------|--------------|
  0 |   0       0   |     .      .    |   .        .  |   .      .   |
  1 |   1/2     0   |    0      1     |   .        .  |   .      .   |
  2 |   2      -2   |   -1/2    2     |  0        4/3 |   .      .   |
  3 |  17/2   -12   |   -4     23/3   |  1/2      2/3 |  0     23/15 |
  4 |  40    -184/3 | - 49/2   40     |  6    -118/15 | -1/2   12/5  |
  5 | 401/2  -940/3 | -140    3323/15 | 97/2 -1118/15 | -8    499/35 |
.
continued:
  \ k     4       |      5       |
   \  s/t   u/v   | s/t    u/v   |
  j \-------------|--------------|
  0 |  .     .    |  .      .    |
  1 |  .     .    |  .      .    |
  2 |  .     .    |  .      .    |
  3 |  .     .    |  .      .    |
  4 | 0   176/105 |  .      .    |
  5 | 1/2  20/21  | 0    563/315 |
.
E.g., the resistance for a node distance vector (4,1) is R = T(4,1)/A131406(5,2) + (2/Pi)*A355566(4,1)/A355567(4,1) = -49/2 + (2/Pi)*40/1 = 80/Pi - 49/2.
		

References

  • See A211074 for more references and links.

Crossrefs

A131406 are the corresponding denominators t, with indices shifted by 1.
A355566 and A355567 are u and v.
Cf. A355585, A355586, A355587, A355588 (same problem for the infinite triangular lattice).

Programs

  • Maple
    See link.
  • Mathematica
    alphas[beta_] :=
    Log[2 - Cos[beta] + Sqrt[3 + Cos[beta]*(Cos[beta] - 4)]];
    Rsqu[n_, p_] :=
    Simplify[(1/Pi)*
       Integrate[(1 - Exp[-Abs[n]*alphas[beta]]*Cos[p*beta])/
         Sinh[alphas[beta]], {beta, 0, Pi}]];
    Table[Rsqu[n, k], {n, 0, 4}, {k, 0, n}] // TableForm (* Hugo Pfoertner, Aug 21 2022, calculates R, after Atkinson and Steenwijk *)
  • PARI
    R(m,p,x=pi) = {if (m==0 && p==0, return(0)); if (m==1 && p==0, return(1/2)); if (m==1 && p==1, return(2/x)); if(m==p, my(mm=m-1); return(R(mm,mm)*4*mm/(2*mm+1) - R(mm-1,mm-1)*(2*mm-1)/(2*mm+1))); if (p==(m-1), my(mm=m-1); return(2*R(mm,mm) - R(mm,mm-1))); if (p==0, my(mm=m-1); return(4*R(mm,0) - R(mm-1,0) - 2*R(mm,1))); if (p0, my(mm=m-1); return(4*R(mm,p) - R(mm-1,p) - R(mm,p+1) - R(mm,p-1)))};
    for(j=0,9,for(k=0,j,my(q=pi*R(j,k,pi));print1(numerator(polcoef(q,1,pi)),", "));print())

Formula

The resistance for the distance vector (j,k) is R(j,k) = T(j,k)/(1+mod(j+k,2)) +(2/Pi)*A355566(j,k)/A355567(j,k), avoiding the use of A131406.
From Rainer Rosenthal, Aug 04 2022: (Start)
R(0,0) = 0; R(1,0) = 1/2.
R(n,n) = R(n-1,n-1) + (2/Pi)/(2*n-1) for n >= 1.
R(j,k) = R(k,j) and R(-j,k) = R(j,k).
4*R(j,k) = R(j-1,k) + R(j+1,k) + R(j,k-1) + R(j,k+1) for (j,k) != (0,0).
(End)
T(j+1,0) = A089165(j)/(1 + mod(j,2)) for j >= 0. - Hugo Pfoertner, Aug 21 2022

A355586 T(j,k) are the denominators t in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.

Original entry on oeis.org

1, 3, 3, 3, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 3, 3, 3, 1
Offset: 0

Views

Author

Hugo Pfoertner, Jul 09 2022

Keywords

Comments

See A355585 for more information.

Examples

			The triangle begins:
  1;
  3;
  3, 3;
  1, 1;
  3, 1, 1;
  3, 3, 1;
  1, 3, 3, 1;
  3, 3, 1, 3;
  3, 3, 3, 3, 3;
  1, 1, 1, 1, 1;
		

References

  • See A211074 for references and links.

Crossrefs

A355585 are the corresponding numerators.
A355587 and A355588 are u and v.

Programs

A355587 T(j,k) are the numerators u in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.

Original entry on oeis.org

0, 0, -2, 1, -24, 5, -280, 64, -14, -3400, 808, -111, -212538, 51929, -9054, 1989, -2708944, 673429, -127303, 15576, -244962336, 61623224, -12361214, 1891328, -405592, -3195918288, 810930216, -169618717, 28113999, -3217136, -42013225014, 2146081719, -2315951182, 81986531, -57942922, 12257507
Offset: 0

Views

Author

Hugo Pfoertner, Jul 09 2022

Keywords

Comments

See A355585 for more information.

Examples

			The triangle begins:
            0;
            0;
           -2,         1;
          -24,         5;
         -280,        64,        -14;
        -3400,       808,       -111;
      -212538,     51929,      -9054,     1989;
     -2708944,    673429,    -127303,    15576;
   -244962336,  61623224,  -12361214,  1891328,  -405592;
  -3195918288, 810930216, -169618717, 28113999, -3217136;
		

Crossrefs

A355588 are the corresponding denominators v.
A355585 and A355586 are s and t.

Programs

  • PARI
    Rtri(n, p) = {my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
    jk(j,k) = {my(jj=j,kk=k); if(k<1, jj=j-k+1; kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj,kk]};
    D(n) = subst(pollegendre(n), 'x, 7);
    uv(k) = (Rtri(k,0) - sum(j=0, k-1, D(j))/3) / (2*sqrt(3)/Pi);
    poddpri(primax) = {my(pp=1,p=2); while (p<=primax, p=nextprime(p+1); pp*=p); pp};
    UV(nend) = { my(nmax=nend+1,M=matrix(nmax,(nmax+1)\2)); for (n=3, nmax, M[n,1] = bestappr(uv(n-1),poddpri(n-1))); for (n=3, nmax, M[n,2]=(1/2)*(6*M[n-1,1] - 2*M[jk(n-1,2)[1],jk(n-1,2)[2]] - M[n-2,1] - M[n,1])); for (n=5, nmax, for (m=3,(n+1)\2, M[n,m] = 6*M[jk(n-1,m-1)[1],jk(n-1,m-1)[2]] - M[jk(n-1,m)[1],jk(n-1,m)[2]] - M[jk(n-2,m-1)[1],jk(n-2,m-1)[2]] - M[jk(n-2,m-2)[1],jk(n-2,m-2)[2]] - M[jk(n-1,m-2)[1],jk(n-1,m-2)[2]] - M[jk(n,m-1)[1],jk(n,m-1)[2]] )); M};
    UV(11)

A355954 Decimal expansion of the constant A in the asymptotic behavior R(d) = log(d)/(Pi*sqrt(3)) + A of the resistance between two nodes separated by the Euclidean distance d in an infinite triangular lattice of one-ohm resistors.

Original entry on oeis.org

3, 3, 4, 4, 1, 2, 0, 3, 1, 3, 9, 2, 4, 1, 9, 8, 0, 2, 0, 4, 3, 9, 1, 3, 9, 1, 2, 2, 2, 1, 2, 2, 7, 0, 8, 8, 1, 5, 4, 5, 6, 5, 1
Offset: 0

Views

Author

Hugo Pfoertner, Jul 26 2022

Keywords

Comments

From an engineering point of view, this constant summand can be regarded as a kind of near-field contribution, which contains the well-known resistance of 1/3 ohms between 2 neighboring nodes as the main part.
The asymptotic formula is analogous to that known for the square lattice. The constant was determined by comparison with the exact integral (see A355589) for the resistance, evaluated for very large distances d (maximum approx. 10^9, for larger arguments the computational effort is no longer manageable). At the moment (July 2022) no representation in closed form is known. A derivation similar to the method used to determine A355953 might be applicable.

Examples

			0.3344120313924198...
		

Crossrefs

Cf. A355589, A355953 (similar for square lattice).
Cf. A355585, A355586, A355587, A355588 (exact solutions for small distances).

Programs

  • Mathematica
    alphat[beta_] := ArcCosh[2/Cos[beta] - Cos[beta]];
    Rtri[n_, p_] :=
      SetAccuracy[1/(Pi), 150]*
       NIntegrate[(1 -
           Exp[-Abs[n - p]*alphat[beta]]*Cos[(n + p)*beta])/(Cos[
            beta]*Sinh[alphat[beta]]), {beta, 0, Pi/2},
        WorkingPrecision -> 150];
    Rtri[3*10^8, 0] - SetAccuracy[Log[3*10^8]/(Pi* Sqrt[3]), 150];

A356203 a(n) is the first component x of the distance vector (x,y) in an oblique 120-degree coordinate system, 0 <= y <= x, between two nodes of an infinite triangular lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. y is A356204(n).

Original entry on oeis.org

0, 43, 9615, 2299822, 507491696, 118805048562, 25315296119626, 5959615271620724
Offset: 0

Views

Author

Hugo Pfoertner, Aug 13 2022

Keywords

Examples

			  n                   x                  y    R(x,y) - n
  0                   0                  0    0
  1                  43                 18    5.033*10^(-6)
  2                9615               2536    1.848*10^(-10)
  3             2299822            1136101   -3.120*10^(-14)
  4           507491696          119227930    5.751*10^(-19)
  5        118805048562        33636581266    5.618*10^(-23)
  6      25315296119626      1774960492720    8.406*10^(-29)
  7    5959615271620724    685318499093455    2.526*10^(-32)
		

Crossrefs

Cf. A356201, A356202 (similar for square lattice).

A356204 a(n) is the second component y of the distance vector (x,y) in an oblique 120-degree coordinate system, 0 <= y <= x, between two nodes of an infinite triangular lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. x is A356203(n).

Original entry on oeis.org

0, 18, 2536, 1136101, 119227930, 33636581266, 1774960492720, 685318499093455
Offset: 0

Views

Author

Hugo Pfoertner, Aug 13 2022

Keywords

Examples

			See table in A356203.
		

Crossrefs

Cf. A356201, A356202 (similar for square lattice).

A355951 Negated column 0 of the irregular triangle A355587.

Original entry on oeis.org

0, 0, 2, 24, 280, 3400, 212538, 2708944, 244962336, 3195918288, 42013225014, 111125508824, 11603576403816, 30966112647080, 188641282541015866, 2532986569522773024, 34096877865475065728, 459984329860282638816, 105694712757690117569946, 1431044069320995796765272, 73738714208458783084303688
Offset: 0

Views

Author

Hugo Pfoertner, Jul 21 2022

Keywords

Comments

a(n) are the numerators u in the representation R = s/t - (2*sqrt(3)/Pi)*u/v of the resistance between two nodes with distance n on the same grid line in an infinite triangular lattice of one-ohm resistors. The corresponding denominators are A355952. s(n)/t(n) = (1/3)*Sum_{k=0..n-1} A084768(k-1) for n >= 0.
R(n) > 1 [ohm] for n >= 38. Cserti (2000, page 11) claims that R(n) is logarithmically divergent for large values of n.

Crossrefs

Cf. A355587, A355952 (denominators).

Programs

  • PARI
    Rtri(n, p) = {my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
    D(n) = subst(pollegendre(n), x, 7);
    uv(k) = (Rtri(k) - sum(j=0, k-1, D(j))/3) / (2*sqrt(3)/Pi);
    poddpri(primax) = {my(pp=1,p=2); while (p<=primax, p=nextprime(p+1); pp*=p); pp};
    for (k=0, 20, print1(-numerator(bestappr(uv(k),poddpri(k))), ", "))
    \\ for A355952 replace by
    \\ for (k=0, 20, print1(denominator(bestappr(uv(k),poddpri(k))),", "))
Showing 1-9 of 9 results.