A356670
a(n) is the number of correct decimal digits of Pi obtained from the fraction A355622(n)/A355623(n).
Original entry on oeis.org
0, 2, 3, 2, 4, 4, 7, 8, 8, 10, 10, 11, 11, 14, 14, 15, 16, 18, 18, 18, 19, 20, 22
Offset: 1
a(9) = 8 since A355622(9)/A355623(9) = 422334431/134433224 = 3.1415926690860... matches the first 8 digits of Pi: 3.1415926535897...
A355622
a(n) is the n-digit positive number with no trailing zeros and coprime to its digital reversal R(a(n)) at which abs(a(n)/R(a(n))-Pi) is minimized.
Original entry on oeis.org
1, 92, 581, 5471, 52861, 998713, 7774742, 93630892, 422334431, 9190135292, 45425395441, 472539314051, 5784475521481, 49371008251751, 939253175379892, 9265811239939492, 52949745472445861, 952186420153090303, 9836241210282790313, 36386277546811128511, 442327789252803797041
Offset: 1
n fraction approximated value
- ------------------- ------------------
1 1 1
2 92/29 3.1724137931034...
3 581/185 3.1405405405405...
4 5471/1745 3.1352435530086...
5 52861/16825 3.1418127786033...
6 998713/317899 3.1416047235128...
7 7774742/2474777 3.1415929596889...
8 93630892/29803639 3.1415926088757...
9 422334431/134433224 3.1415926690860...
...
- Petr Beckmann, A History of Pi, 3rd Ed., Boulder, Colorado: The Golem Press (1974): p. 27.
Cf.
A355623 (denominator or digital reversal).
-
nmax=9; a={}; For[n=1, n<=nmax, n++, minim=Infinity; For[k=10^(n-1), k<=10^n-1, k++, If[(dist=Abs[k/FromDigits[Reverse[IntegerDigits[k]]]-Pi]) < minim && Last[IntegerDigits[k]]!=0 && GCD[k,FromDigits[Reverse[IntegerDigits[k]]]]==1, minim=dist; kmin=k]]; AppendTo[a, kmin]]; a
A364844
a(n) is the n-digit numerator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal.
Original entry on oeis.org
3, 22, 474, 1551, 36163, 292292, 7327237, 31311313
Offset: 1
n fraction approximated value
- ------------------- ------------------
1 3 3
2 22/7 3.1428571428571...
3 474/151 3.1390728476821...
4 1551/494 3.1396761133603...
5 36163/11511 3.1416036834332...
6 292292/93039 3.1416072829673...
7 7327237/2332332 3.1415926206046...
8 31311313/9966699 3.1415931192464...
...
-
nmax = 8; a = {3}; hmin = kmin = 0; For[n = 2, n <= nmax, n++, minim = Infinity; h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; k = Select[Range[10^(n - 2), 10^n - 1], PalindromeQ]; lh = Length[h]; lk = Length[k]; For[i = 1, i <= lh, i++, For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - Pi]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; hmin = Part[h, i]]]]; AppendTo[a, hmin]]; a
A364845
a(n) is the denominator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal, with the numerator h of n digits.
Original entry on oeis.org
1, 7, 151, 494, 11511, 93039, 2332332, 9966699
Offset: 1
n fraction approximated value
- ------------------- ------------------
1 3 3
2 22/7 3.1428571428571...
3 474/151 3.1390728476821...
4 1551/494 3.1396761133603...
5 36163/11511 3.1416036834332...
6 292292/93039 3.1416072829673...
7 7327237/2332332 3.1415926206046...
8 31311313/9966699 3.1415931192464...
...
-
nmax = 8; a = {1}; hmin = kmin = 0; For[n = 2, n <= nmax, n++, minim = Infinity; h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; k = Select[Range[10^(n - 2), 10^n - 1], PalindromeQ]; lh = Length[h]; lk = Length[k]; For[i = 1, i <= lh, i++, For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - Pi]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; kmin = Part[k, j]]]]; AppendTo[a, kmin]]; a
A380100
a(n) is the denominator of the fraction h/k with h and k coprime positive integers at which abs((h/k)^4-Pi) is minimal, with the numerator h of n digits.
Original entry on oeis.org
3, 73, 667, 7174, 10177, 379552, 3456676, 66066573, 223935013
Offset: 1
n (h/k)^4 approximated value
- ------------------- ------------------
1 (4/3)^4 3.1604938271604...
2 (97/73)^4 3.1174212867620...
3 (888/667)^4 3.1415829223858...
4 (9551/7174)^4 3.1415927852873...
5 (13549/10177)^4 3.1415926560044...
...
-
nmax = 3; a = {}; hmin = kmin = 0; For[n = 1, n <= nmax, n++, minim = Infinity; For[h = 10^(n-1), h <10^n, h++, For[k = 1, k < 10^n/Pi^(1/4), k++, If[(dist = Abs[h^4/k^4-Pi]) < minim && GCD[h,k]==1, minim = dist; hmin=h; kmin = k]]]; AppendTo[a, kmin]]; a
Showing 1-5 of 5 results.
Comments