A355662 Smallest number of children of any vertex which has children, in the rooted tree with Matula-Goebel number n.
0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1
Keywords
Examples
For n=31972, the tree is as follows and vertex 1007 has 2 children which is the least among the vertices which have children, so a(31972) = 2. 31972 root / | \ 1 1 1007 Tree n=31972 and its / \ subtree numbers. 8 16 /|\ // \\ 1 1 1 1 1 1 1
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; uses numtheory; min(bigomega(n), map(p-> a(pi(p)), factorset(n) minus {2})[]) end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 15 2022
-
Mathematica
a[n_] := a[n] = Min[Join[{PrimeOmega[n]}, a /@ PrimePi @ Select[ FactorInteger[n][[All, 1]], #>2&]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Sep 08 2022 *)
-
PARI
a(n) = my(f=factor(n)); vecmin(concat(vecsum(f[,2]), [self()(primepi(p)) |p<-f[,1], p!=2]));
Formula
a(n) = min(bigomega(n), {a(primepi(p)) | p odd prime factor of n}).
a(n) = Min_{s>=2 in row n of A354322} bigomega(s).
Comments