cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A355731 Number of ways to choose a sequence of divisors, one of each element of the multiset of prime indices of n (row n of A112798).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 2, 2, 4, 3, 4, 1, 2, 4, 4, 2, 6, 2, 3, 2, 4, 4, 8, 3, 4, 4, 2, 1, 4, 2, 6, 4, 6, 4, 8, 2, 2, 6, 4, 2, 8, 3, 4, 2, 9, 4, 4, 4, 5, 8, 4, 3, 8, 4, 2, 4, 6, 2, 12, 1, 8, 4, 2, 2, 6, 6, 6, 4, 4, 6, 8, 4, 6, 8, 4, 2, 16, 2, 2, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 4 choices are: (1,1), (1,3), (2,1), (2,3).
The a(18) = 4 choices are: (1,1,1), (1,1,2), (1,2,1), (1,2,2).
		

Crossrefs

Positions of 1's are A000079.
Dominated by A003963 (cf. A049820), with equality at A003586.
Positions of first appearances are A355732.
Counting distinct sequences after sorting gives A355733, firsts A355734.
Requiring the result to be weakly increasing gives A355735, firsts A355736.
Requiring the result to be relatively prime gives A355737, firsts A355738.
Requiring the choices to be distinct gives A355739, zeros A355740.
For prime divisors A355741, prime-powers A355742, weakly increasing A355745.
Choosing divisors of each of 1..n and resorting gives A355747.
An ordered version (using standard order compositions) is A355748.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A340852 lists numbers that can be factored into divisors of bigomega.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Length/@Divisors/@primeMS[n],{n,100}]

Formula

a(n) = Product_{k=1..A001222(n)} A000005(A112798(n,k)).

A355732 Least k such that there are exactly n ways to choose a sequence of divisors, one of each element of the multiset of prime indices of k (with multiplicity).

Original entry on oeis.org

1, 3, 7, 9, 53, 21, 311, 27, 49, 159, 8161, 63, 38873, 933, 371, 81, 147, 477, 2177, 24483, 189, 2809, 343, 2799, 1113, 243, 57127, 16483, 441, 1431, 6531, 73449, 2597, 567, 96721, 8427, 1029, 8397, 3339, 15239, 729, 49449, 1323, 19663, 4293, 2401, 19593, 7791
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355731.
Appears to be a subset of A353397.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     53: {16}
     21: {2,4}
    311: {64}
     27: {2,2,2}
     49: {4,4}
    159: {2,16}
   8161: {1024}
     63: {2,2,4}
For example, the choices for a(12) = 63 are:
  (1,1,1)  (1,2,2)  (2,1,4)
  (1,1,2)  (1,2,4)  (2,2,1)
  (1,1,4)  (2,1,1)  (2,2,2)
  (1,2,1)  (2,1,2)  (2,2,4)
		

Crossrefs

Positions of first appearances in A355731.
Counting distinct sequences after sorting: A355734, firsts of A355733.
Requiring the result to be weakly increasing: A355736, firsts of A355735.
Requiring the result to be relatively prime: A355738, firsts of A355737.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Times@@Length/@Divisors/@primeMS[n],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A355745 Number of ways to choose a prime factor of each prime index of n (with multiplicity, in weakly increasing order) such that the result is also weakly increasing.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

First differs from A355741 and A355744 at n = 35.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1469 are {6,30}, and there are five valid choices: (2,2), (2,3), (2,5), (3,3), (3,5), so a(1469) = 5.
		

Crossrefs

Allowing all divisors gives A355735, firsts A355736, reverse A355749.
Not requiring an increasing sequence gives A355741.
Choosing a multiset instead of sequence gives A355744.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 chooses of a divisor of each prime index, firsts A355732.
A355733 chooses a multiset of divisors, firsts A355734.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Union/@primeMS/@primeMS[n]],LessEqual@@#&]],{n,100}]

A355733 Number of multisets that can be obtained by choosing a divisor of each prime index of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 4, 1, 2, 3, 4, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 1, 4, 2, 6, 3, 6, 4, 7, 2, 2, 5, 4, 2, 6, 3, 4, 2, 6, 3, 4, 4, 5, 4, 4, 3, 7, 4, 2, 4, 6, 2, 7, 1, 7, 4, 2, 2, 6, 6, 6, 3, 4, 6, 6, 4, 6, 7, 4, 2, 5, 2, 2, 5, 4, 4, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 4 multisets are: {1,1}, {1,2}, {1,3}, {2,3}.
The a(18) = 3 multisets are: {1,1,1}, {1,1,2}, {1,2,2}.
		

Crossrefs

Counting all choices of divisors gives A355731, firsts A355732.
Positions of first appearances are A355734.
Choosing weakly increasing divisors gives A355735, firsts A355736.
Choosing only prime divisors gives A355744.
The version choosing a divisor of each number from 1 to n is A355747.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A340852 lists numbers that can be factored into divisors of bigomega.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,100}]

A355735 Number of ways to choose a divisor of each prime index of n (taken in weakly increasing order) such that the result is weakly increasing.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 3, 1, 2, 3, 4, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 3, 2, 1, 3, 2, 4, 3, 6, 4, 7, 2, 2, 5, 4, 2, 4, 3, 4, 2, 6, 3, 3, 4, 5, 4, 3, 3, 7, 4, 2, 3, 6, 2, 7, 1, 6, 3, 2, 2, 5, 4, 6, 3, 4, 6, 4, 4, 4, 7, 4, 2, 5, 2, 2, 5, 3, 4, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(15) = 3 ways are: (1,1), (1,3), (2,3).
The a(18) = 3 ways are: (1,1,1), (1,1,2), (1,2,2).
The a(2) = 1 through a(19) = 4 ways:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111  1
     2      3  12  2       12  13  5  112  2  12  13        7  112  2
                   4       22              3  14  23           122  4
                                           6                        8
		

Crossrefs

Allowing any choice of divisors gives A355731, firsts A355732.
Choosing a multiset instead of sequence gives A355733, firsts A355734.
Positions of first appearances are A355736.
Choosing only prime divisors gives A355745, variations A355741, A355744.
The reverse version is A355749.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Divisors/@primeMS[n]],LessEqual@@#&]],{n,100}]

A355734 Least k such that there are exactly n multisets that can be obtained by choosing a divisor of each prime index of k.

Original entry on oeis.org

1, 3, 7, 13, 21, 35, 39, 89, 133, 105, 91, 195, 351, 285, 247, 333, 273, 481, 455, 555, 623, 801, 791, 741, 1359, 1157, 1281, 1335, 1365, 1443, 1977, 1729, 1967, 1869, 2109, 3185, 2373, 2769, 2639, 4361, 3367, 3653, 3885, 3471, 4613, 5883, 5187, 5551, 6327
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355733.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   13: {6}
   21: {2,4}
   35: {3,4}
   39: {2,6}
   89: {24}
  133: {4,8}
  105: {2,3,4}
   91: {4,6}
  195: {2,3,6}
  351: {2,2,2,6}
For example, the choices for a(12) = 195 are:
  {1,1,1}  {1,2,2}  {1,3,6}
  {1,1,2}  {1,2,3}  {2,2,3}
  {1,1,3}  {1,2,6}  {2,3,3}
  {1,1,6}  {1,3,3}  {2,3,6}
		

Crossrefs

Counting all choices of divisors gives A355732, firsts of A355731.
Positions of first appearances in A355733.
Choosing weakly increasing divisors gives A355736, firsts of A355735.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A355749 Number of ways to choose a weakly decreasing sequence of divisors, one of each prime index of n (with multiplicity, taken in weakly increasing order).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 4, 1, 3, 1, 4, 1, 6, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(19) = 4 choices:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111  1
     2      3      2       21      5       2      21        7       2
                   4       22              3                        4
                                           6                        8
		

Crossrefs

Allowing any choice of divisors gives A355731, firsts A355732.
Choosing a multiset instead of sequence gives A355733, firsts A355734.
The reverse version is A355735, firsts A355736, only primes A355745.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Divisors/@primeMS[n]], GreaterEqual@@#&]],{n,100}]
Showing 1-7 of 7 results.