A355750 Sum of the divisors of 2n minus the number of divisors of 2n.
1, 4, 8, 11, 14, 22, 20, 26, 33, 36, 32, 52, 38, 50, 64, 57, 50, 82, 56, 82, 88, 78, 68, 114, 87, 92, 112, 112, 86, 156, 92, 120, 136, 120, 136, 183, 110, 134, 160, 176, 122, 212, 128, 172, 222, 162, 140, 240, 165, 208, 208, 202, 158, 268, 208, 238, 232, 204, 176, 344, 182
Offset: 1
Examples
a(7) = 20; the partitions of 2*7 = 14 into two parts (s,t) where s <= t are: (1,13), (2,12), (3,11), (4,10), (5,9), (6,8), and (7,7). The sum of the quotients t/s such that each t/s is an integer is then: 13/1 + 12/2 + 7/7 = 13 + 6 + 1 = 20.
Programs
-
Mathematica
Table[DivisorSigma[1, 2 n] - DivisorSigma[0, 2 n], {n, 80}]
-
PARI
a(n) = my(f=factor(2*n)); sigma(f) - numdiv(f); \\ Michel Marcus, Jul 16 2022
Comments