cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355828 Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, -3, -1, 8, -1, 3, -1, -24, 0, 3, -1, -8, -1, 3, 1, 72, -1, 0, -1, -28, 1, 3, -1, 12, 0, 3, -4, -8, -1, -3, -1, -222, 1, 3, 1, 0, -1, 3, 1, 138, -1, -3, -1, -10, 0, 3, -1, 0, 0, 0, 1, -8, -1, 12, 1, 24, -3, 3, -1, 28, -1, 3, 0, 684, -5, -3, -1, -16, 1, -3, -1, 12, -1, 3, 0, -8, 1, -3, -1, -538, 8, 3, -1, 8, 1, 3, -3, 30
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2022

Keywords

Crossrefs

Cf. also A355829.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[n_] := GCD[DivisorSigma[1, n], Times @@ f @@@ FactorInteger[n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));
    memoA355828 = Map();
    A355828(n) = if(1==n,1,my(v); if(mapisdefined(memoA355828,n,&v), v, v = -sumdiv(n,d,if(dA342671(n/d)*A355828(d),0)); mapput(memoA355828,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA342671(n/d) * a(d).