A355865
Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (x^n - (-1)^n*2*A(x))^(2*n+1).
Original entry on oeis.org
1, 3, 25, 254, 2844, 34031, 426498, 5526399, 73433377, 995167783, 13701794657, 191122323160, 2695092314319, 38357425655599, 550268824751092, 7948720164361366, 115517358604881329, 1687796954715824015, 24777722054035138573, 365305177280838473896
Offset: 0
G.f.: A(x) = 1 + 3*x + 25*x^2 + 254*x^3 + 2844*x^4 + 34031*x^5 + 426498*x^6 + 5526399*x^7 + 73433377*x^8 + 995167783*x^9 + 13701794657*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, x^m * (x^m - (-1)^m*2*Ser(A))^(2*m+1) ), #A-1)/2);A[n+1]}
for(n=0,20,print1(a(n),", "))
A366229
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (x^(3*n+1) - A(x))^n.
Original entry on oeis.org
1, 1, 2, 4, 10, 23, 55, 138, 349, 904, 2377, 6323, 16993, 46036, 125625, 344973, 952565, 2643257, 7366942, 20613366, 57884187, 163071852, 460769168, 1305466309, 3707928596, 10555941648, 30115379589, 86087330322, 246541672062, 707274898726, 2032285666846
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 23*x^5 + 55*x^6 + 138*x^7 + 349*x^8 + 904*x^9 + 2377*x^10 + 6323*x^11 + 16993*x^12 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, x^n * (x^(3*n+1) - Ser(A))^n ), #A) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A380676
G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^n)^(3*n+1).
Original entry on oeis.org
1, 2, 9, 76, 591, 5127, 46919, 444617, 4333010, 43132310, 436715297, 4483520704, 46564078707, 488335074439, 5164287656762, 55010054836724, 589682412920880, 6356441723399838, 68858811108713642, 749250723117079260, 8185098919015604558, 89739660783143322586, 987110817010576637569
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 76*x^3 + 591*x^4 + 5127*x^5 + 46919*x^6 + 444617*x^7 + 4333010*x^8 + 43132310*x^9 + 436715297*x^10 + ...
SPECIFIC VALUES.
A(t) = 3/2 at t = 0.084454810721317538501174440773777047952092460562060...
where 2 = Sum_{n=-oo..+oo} (-t)^n * (3/2 + t^n)^(3*n+1).
A(t) = 4/3 at t = 0.077952215522932621280995556726745992779521168178442...
A(t) = 5/4 at t = 0.069865542488187377549700484712724108090103217291400...
A(t) = 6/5 at t = 0.062525019563729453209334340397151869258204650105887...
A(1/12) = 1.4451475449531942766582635648883506035661276873944...
where 2 = Sum_{n=-oo..+oo} (-1/12)^n * (A(1/12) + (1/12)^n)^(3*n+1).
A(1/13) = 1.3197666375699291221191258833369709715040515804644...
A(1/14) = 1.2629677124586701325494126247872966004241466655536...
A(1/15) = 1.2263276036037963341062042248250428743844880153971...
A(1/16) = 1.1998529038743458677434930677034050910039899372219...
-
{a(n) = my(V=[1]); for(i=1, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef(2 - sum(n=-#V, #V, (-1)^n * x^n * (A + x^n)^(3*n+1) ), #V-1) ); H=A; V[n+1]}
for(n=0, 30, print1(a(n), ", "))
A380677
G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - A(x))^(3*n+1).
Original entry on oeis.org
1, 2, 8, 36, 198, 1128, 6837, 42690, 273960, 1792650, 11922735, 80342746, 547403208, 3764568202, 26097746670, 182183863242, 1279566641040, 9035527984360, 64109825254786, 456834687004440, 3267926616628182, 23458797921291994, 168936073477132102, 1220121029135864026, 8835737467337361482
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 198*x^4 + 1128*x^5 + 6837*x^6 + 42690*x^7 + 273960*x^8 + 1792650*x^9 + 11922735*x^10 + ...
SPECIFIC VALUES.
A(t) = 7/4 at t = 0.12654949614445186746403892264694555335923498557738...
where 1 = Sum_{n=-oo..+oo} t^(2*n) * (t^n - 7/4)^(3*n+1).
A(t) = 5/3 at t = 0.12374694612565134762563311753154796236873902596812...
A(t) = 3/2 at t = 0.11392195456863186572686610752037791827642247932473...
A(t) = 4/3 at t = 0.09535917714046949923896929084305426642940930464927...
A(t) = 5/4 at t = 0.08098320583796566321668508295130093344916245020730...
A(1/8) = 1.69987163237671043867918157348979527169465395859405...
where 1 = Sum_{n=-oo..+oo} (1/8)^(2*n) * ((1/8)^n - A(1/8))^(3*n+1).
A(1/9) = 1.46724009425513930419976858432180568713155056224164...
A(1/10) = 1.3665270076239843695076027726524469708778850053524...
A(1/11) = 1.3048130783240200786482939740924774873262324649207...
A(1/12) = 1.2620494023042372384830602119971826992309809007730...
A(1/14) = 1.2057100150678855865365454675611764497376238367914...
A(1/16) = 1.1698113057379453133949062841882391284824341375308...
-
{a(n) = my(V=[1]); for(i=1, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef(-1 + sum(n=-#V, #V, x^(2*n) * (x^n - A)^(3*n+1) ), #V-1) ); H=A; V[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361766
Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n/A(-x))^(n+2).
Original entry on oeis.org
1, 1, 2, 5, 12, 27, 57, 123, 280, 666, 1614, 3955, 9733, 23949, 58967, 145844, 363137, 910339, 2295192, 5811070, 14754567, 37542078, 95715596, 244567665, 626388406, 1608131393, 4137707994, 10667045757, 27546269363, 71241831762, 184508259405, 478501423792
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 27*x^5 + 57*x^6 + 123*x^7 + 280*x^8 + 666*x^9 + 1614*x^10 + 3955*x^11 + 9733*x^12 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff( sum(m=-#A,#A, (-x)^m * (1 - (-x)^m/Ser(A))^(m+2) ), #A-3));A[n+1]}
for(n=0,35,print1(a(n),", "))
A385909
Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^(3*n+1).
Original entry on oeis.org
1, 1, 3, 9, 31, 122, 493, 2086, 9106, 40764, 186206, 865068, 4076020, 19437711, 93655043, 455293416, 2230636436, 11003483165, 54607084364, 272453502850, 1365876088389, 6876896373019, 34757806185051, 176291771193079, 897001780346928, 4577362669389502, 23420275560794225, 120123996076924029
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 31*x^4 + 122*x^5 + 493*x^6 + 2086*x^7 + 9106*x^8 + 40764*x^9 + 186206*x^10 + 865068*x^11 + 4076020*x^12 + ...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, x^n*(x^(2*n) - Ser(A))^(3*n+1) ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-6 of 6 results.
Comments