A357227
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
Original entry on oeis.org
1, 1, 5, 27, 156, 961, 6145, 40546, 273784, 1883468, 13153544, 93012247, 664640794, 4791939802, 34816034143, 254659426691, 1873698891024, 13858201221637, 102975937795619, 768385165594607, 5755185884844403, 43253819566052165, 326093530416255178, 2465456045342545908
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 156*x^4 + 961*x^5 + 6145*x^6 + 40546*x^7 + 273784*x^8 + 1883468*x^9 + 13153544*x^10 + 93012247*x^11 + 664640794*x^12 + ...
where
1 = ... + x^(-3)/(2*A(x) - x^(-3))^4 + x^(-2)/(2*A(x) - x^(-2))^3 + x^(-1)/(2*A(x) - x^(-1))^2 + 1/(2*A(x) - 1) + x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...
SPECIFIC VALUES.
A(1/9) = 1.30108724398914093656591796643458817060949...
A(1/10) = 1.22176622612326449515553495048940456186175...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^(2*m) * (2*Ser(A) - x^m)^(m-1) )/(2*Ser(A)), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m^2)/(1 - 2*Ser(A)*x^m)^(m+1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m*(m-1))/(1 - 2*Ser(A)*x^m)^(m+1) )/(2*Ser(A)), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A358952
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).
Original entry on oeis.org
1, 2, 18, 124, 1244, 11652, 122153, 1281722, 14009973, 154993908, 1748602308, 19949674928, 230299666100, 2682127476280, 31492460744869, 372295036400060, 4428101312591810, 52949362040059258, 636176332781478365, 7676183282453865394, 92978971123440688904
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 124*x^3 + 1244*x^4 + 11652*x^5 + 122153*x^6 + 1281722*x^7 + 14009973*x^8 + 154993908*x^9 + 1748602308*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(2*n) * (x^n - 2*Ser(A))^(3*n+1) ), #A-1)/2);A[n+1]}
for(n=0,20,print1(a(n),", "))
A355866
Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (x^n - A(x))^(3*n+1).
Original entry on oeis.org
1, 2, 5, 20, 77, 319, 1357, 5861, 25934, 117970, 554949, 2713732, 13801721, 72690859, 393319668, 2166067444, 12036890380, 67038139970, 372431798808, 2058011292264, 11296150608376, 61573508814470, 333509165576785, 1797289086416868, 9653137938138051
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 77*x^4 + 319*x^5 + 1357*x^6 + 5861*x^7 + 25934*x^8 + 117970*x^9 + 554949*x^10 + 2713732*x^11 + ...
where
0 = ... + x^(-3)/(x^(-3) - A(x))^8 + x^(-2)/(x^(-2) - A(x))^5 + x^(-1)/(x^(-1) - A(x))^2 + (1 - A(x)) + x*(x - A(x))^4 + x^2*(x^2 - A(x))^7 + x^3*(x^3 - A(x))^10 + ... + x^n * (x^n - A(x))^(3*n+1) + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^n*(x^n - Ser(A))^(3*n+1) ), #A-1));A[n+1]}
for(n=0,30,print1(a(n),", "))
A357232
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^n)^(2*n+1).
Original entry on oeis.org
1, 3, 25, 254, 2763, 32180, 393169, 4964017, 64254694, 848214039, 11375359344, 154547261539, 2122630191360, 29423373611509, 411105855956011, 5783709944279141, 81862107418919278, 1164873718427628846, 16654829725736560441, 239140138388082634266, 3446933945466334214525
Offset: 0
G.f.: A(x) = 1 + 3*x + 25*x^2 + 254*x^3 + 2763*x^4 + 32180*x^5 + 393169*x^6 + 4964017*x^7 + 64254694*x^8 + 848214039*x^9 + 11375359344*x^10 + ...
-
{a(n) = my(A=1); for(L=1,n, A = truncate(A);
A = A + 1 - (1/2)*sum(m=-L,L, (-1)^m * x^m * (2*A + x^m +x^2*O(x^(L+1)))^(2*m+1) ) ); polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A358953
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(3*n) * (x^n - 2*A(x))^(4*n+1).
Original entry on oeis.org
1, 3, 21, 159, 1369, 12131, 111489, 1042310, 9878188, 94345595, 905236045, 8698907855, 83509981377, 798911473287, 7596665295846, 71585365842419, 666055801137389, 6089025714101416, 54304588402962717, 467144137463862047, 3798557443794080777, 27983895459969702990
Offset: 0
G.f.: A(x) = 1 + 3*x + 21*x^2 + 159*x^3 + 1369*x^4 + 12131*x^5 + 111489*x^6 + 1042310*x^7 + 9878188*x^8 + 94345595*x^9 + 905236045*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(3*n) * (x^n - 2*Ser(A))^(4*n+1) ), #A-1)/2);A[n+1]}
for(n=0,25,print1(a(n),", "))
A358954
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(4*n) * (x^n - 2*A(x))^(5*n+1).
Original entry on oeis.org
1, 4, 36, 384, 4568, 57920, 768760, 10543120, 148247390, 2125715618, 30965114225, 456956616284, 6817011617601, 102640570550600, 1557716916728198, 23804070258610024, 365964582592739540, 5656501536118793076, 87846324474413129008, 1370097609728212588634, 21451062781643458337802
Offset: 0
G.f.: A(x) = 1 + 4*x + 36*x^2 + 384*x^3 + 4568*x^4 + 57920*x^5 + 768760*x^6 + 10543120*x^7 + 148247390*x^8 + 2125715618*x^9 + 30965114225*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(4*n) * (x^n - 2*Ser(A))^(5*n+1) ), #A-1)/2);A[n+1]}
for(n=0,25,print1(a(n),", "))
A358955
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(5*n) * (x^n - 2*A(x))^(6*n+1).
Original entry on oeis.org
1, 5, 55, 715, 10285, 157577, 2521339, 41635879, 704264465, 12139738505, 212475103777, 3765897874074, 67454279084444, 1219122315546851, 22204489538545069, 407150017658467685, 7509869807043464691, 139245172845883281403, 2593887890033997265241, 48521833007161546858193
Offset: 0
G.f.: A(x) = 1 + 5*x + 55*x^2 + 715*x^3 + 10285*x^4 + 157577*x^5 + 2521339*x^6 + 41635879*x^7 + 704264465*x^8 + 12139738505*x^9 + 212475103777*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(5*n) * (x^n - 2*Ser(A))^(6*n+1) ), #A-1)/2);A[n+1]}
for(n=0,25,print1(a(n),", "))
A358956
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(6*n) * (x^n - 2*A(x))^(7*n+1).
Original entry on oeis.org
1, 6, 78, 1196, 20280, 366288, 6908744, 134492752, 2681961056, 54504790720, 1124768357872, 23505633975616, 496452504891320, 10580216111991080, 227237269499825185, 4913552644294206262, 106877300690757456293, 2336971970184440328572, 51339570414117180476064
Offset: 0
G.f.: A(x) = 1 + 6*x + 78*x^2 + 1196*x^3 + 20280*x^4 + 366288*x^5 + 6908744*x^6 + 134492752*x^7 + 2681961056*x^8 + 54504790720*x^9 + 1124768357872*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(6*n) * (x^n - 2*Ser(A))^(7*n+1) ), #A-1)/2);A[n+1]}
for(n=0,25,print1(a(n),", "))
A358957
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(7*n) * (x^n - 2*A(x))^(8*n+1).
Original entry on oeis.org
1, 7, 105, 1855, 36225, 753319, 16356809, 366518975, 8412321985, 196761671175, 4672976571753, 112386313863327, 2731613284143345, 66992673654966087, 1655756220596437601, 41199365822954474670, 1031225066096367871764, 25947188077245338061147, 655925022779049206277461
Offset: 0
G.f.: A(x) = 1 + 7*x + 105*x^2 + 1855*x^3 + 36225*x^4 + 753319*x^5 + 16356809*x^6 + 366518975*x^7 + 8412321985*x^8 + 196761671175*x^9 + 4672976571753*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(7*n) * (x^n - 2*Ser(A))^(8*n+1) ), #A-1)/2);A[n+1]}
for(n=0,25,print1(a(n),", "))
A358958
a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(8*n) * (x^n - 2*A(x))^(9*n+1).
Original entry on oeis.org
1, 8, 136, 2720, 60112, 1414400, 34744192, 880722944, 22866372480, 604987038208, 16252230833792, 442118711113216, 12154717695451712, 337169716435693120, 9425612400257630864, 265272780558100130464, 7510038750103097772890, 213729057394800722424678, 6110972702751703321123745
Offset: 0
G.f.: A(x) = 1 + 8*x + 136*x^2 + 2720*x^3 + 60112*x^4 + 1414400*x^5 + 34744192*x^6 + 880722944*x^7 + 22866372480*x^8 + 604987038208*x^9 + 16252230833792*x^10 + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=-#A,#A, x^(8*n) * (x^n - 2*Ser(A))^(9*n+1) ), #A-1)/2);A[n+1]}
for(n=0,25,print1(a(n),", "))
Showing 1-10 of 17 results.
Comments