cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355927 Square array A(n, k) = sigma(A246278(n, k)), read by falling antidiagonals.

Original entry on oeis.org

3, 7, 4, 12, 13, 6, 15, 24, 31, 8, 18, 40, 48, 57, 12, 28, 32, 156, 96, 133, 14, 24, 78, 72, 400, 168, 183, 18, 31, 48, 248, 112, 1464, 252, 307, 20, 39, 121, 84, 684, 216, 2380, 360, 381, 24, 42, 124, 781, 144, 1862, 280, 5220, 480, 553, 30, 36, 104, 342, 2801, 240, 3294, 432, 7240, 720, 871, 32, 60, 56, 372, 1064, 16105, 336, 6140, 600, 12720, 960, 993, 38
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Comments

Each column is strictly monotonic.

Examples

			The top left corner of the array:
   k=  1    2    3      4    5      6    7       8      9     10    11      12
  2k=  2    4    6      8   10     12   14      16     18     20    22      24
----+--------------------------------------------------------------------------
  1 |  3,   7,  12,    15,  18,    28,  24,     31,    39,    42,   36,     60,
  2 |  4,  13,  24,    40,  32,    78,  48,    121,   124,   104,   56,    240,
  3 |  6,  31,  48,   156,  72,   248,  84,    781,   342,   372,  108,   1248,
  4 |  8,  57,  96,   400, 112,   684, 144,   2801,  1064,   798,  160,   4800,
  5 | 12, 133, 168,  1464, 216,  1862, 240,  16105,  2196,  2394,  288,  20496,
  6 | 14, 183, 252,  2380, 280,  3294, 336,  30941,  4298,  3660,  420,  42840,
  7 | 18, 307, 360,  5220, 432,  6140, 540,  88741,  6858,  7368,  576, 104400,
  8 | 20, 381, 480,  7240, 600,  9144, 640, 137561, 11060, 11430,  760, 173760,
  9 | 24, 553, 720, 12720, 768, 16590, 912, 292561, 20904, 17696, 1008, 381600,
Note: See A355941 for the corresponding numbers in A246278 at which points the value in this array divides the term immediately below.
		

Crossrefs

Cf. A008864 (column 1), A062731 (row 1).
Cf. also A341605, A355925, A355941.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A355927sq(row,col) = sigma(A246278sq(row,col));
    A355927list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355927sq(col,(a-(col-1))))); (v); };
    v355927 = A355927list(up_to);
    A355927(n) = v355927[n];

Formula

A(n, k) = A000203(A246278(n, k)).
A(n, k) = A341605(n, k) * A355925(n, k).