cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A062731 Sum of divisors of 2*n.

Original entry on oeis.org

3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, 42, 56, 72, 63, 54, 91, 60, 90, 96, 84, 72, 124, 93, 98, 120, 120, 90, 168, 96, 127, 144, 126, 144, 195, 114, 140, 168, 186, 126, 224, 132, 180, 234, 168, 144, 252, 171, 217, 216, 210, 162, 280, 216, 248, 240, 210
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021

Crossrefs

Sigma(k*n): A000203 (k=1), A144613 (k=3), A193553 (k=4, even bisection), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008438, A074400, A182818, A239052 (odd bisection), A326124 (partial sums), A054784, A215947, A336923, A346870, A346878, A346880, A355750.
Row 2 of A319526. Column & Row 2 of A216626. Row 1 of A355927.
Shallow diagonal (2n,n) of A265652. See also A244658.

Programs

Formula

a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
a(n) = A000203(n) + A054785(n). - R. J. Mathar, May 19 2020
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)

Extensions

Zero removed and offset corrected by Omar E. Pol, Jul 17 2009

A341605 Square array A(n,k) = A017665(A246278(n,k)), read by falling antidiagonals; numerator of the abundancy index as applied onto prime shift array A246278.

Original entry on oeis.org

3, 7, 4, 2, 13, 6, 15, 8, 31, 8, 9, 40, 48, 57, 12, 7, 32, 156, 96, 133, 14, 12, 26, 72, 400, 168, 183, 18, 31, 16, 248, 16, 1464, 252, 307, 20, 13, 121, 84, 684, 216, 2380, 360, 381, 24, 21, 124, 781, 144, 1862, 280, 5220, 480, 553, 30, 18, 104, 342, 2801, 240, 3294, 432, 7240, 720, 871, 32
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Ratio A341605(row, col)/A341606(row, col) shows the abundancy index when applied to the natural numbers > 1 as ordered in the prime shift array A246278:
n = 1 2 3 4 5 6
2n = 2 4 6 8 10 12
----+--------------------------------------------------------------------------
1 | 3/2, 7/4, 2/1, 15/8, 9/5, 7/3,
2 | 4/3, 13/9, 8/5, 40/27, 32/21, 26/15,
3 | 6/5, 31/25, 48/35, 156/125, 72/55, 248/175,
4 | 8/7, 57/49, 96/77, 400/343, 16/13, 684/539,
5 | 12/11, 133/121, 168/143, 1464/1331, 216/187, 1862/1573,
6 | 14/13, 183/169, 252/221, 2380/2197, 280/247, 3294/2873,
7 | 18/17, 307/289, 360/323, 5220/4913, 432/391, 6140/5491,
we see that when going down in each column, the magnitude of the ratio decreases monotonically, which follows because the abundancy index of prime(i+1)^e is less than that of prime(i)^e (see A336389). The first ratio that is < 2 (corresponding to the first deficient number obtained when 2*n is successively prime shifted) is found at row number 1+A336835(2*n) = 1+A378985(n) for column n.
Each ratio r at row n and column k is a product of the topmost ratio (on row 1), and the product of all ratios on rows 1..(row-1) given in arrays A341626/A341627:
n = 1 2 3 4 5 6
2n = 2 4 6 8 10 12
----+--------------------------------------------------------------------------
1 | 8/9, 52/63, 4/5, 64/81, 160/189, 26/35,
2 | 9/10, 279/325, 6/7, 1053/1250, 189/220, 372/455,
3 | 20/21, 1425/1519, 10/11, 12500/13377, 110/117, 4275/4774,
4 | 21/22, 343/363, 49/52, 62769/66550, 351/374, 2401/2574,
5 | 77/78, 22143/22477, 33/34, 791945/804102, 6545/6669, 199287/205751,
6 | 117/119, 51883/52887, 130/133, 573417/584647, 13338/13685, 518830/531981,
In other words, if r(row,col) = A341605(row,col)/A341606(row,col) and d(row,col) = A341626(row,col)/A341627(row,col), then r(row+1,col) = r(row,col)*d(row,col), that is, each column in the latter arrays of ratios gives the first quotients of ratios in the corresponding columns in the former array, and they are all < 1.
See also comments and examples in A341606.
By lemma given in A341529, the ratio A341626/A341627 stays in open interval (0.5 .. 1). - Antti Karttunen, Jan 02 2025

Examples

			The top left corner of the array:
  k=   1    2    3      4    5      6    7       8      9     10    11      12
2k =   2    4    6      8   10     12   14      16     18     20    22      24
----+--------------------------------------------------------------------------
n=1 |  3,   7,   2,    15,   9,     7,  12,     31,    13,    21,   18,      5,
  2 |  4,  13,   8,    40,  32,    26,  16,    121,   124,   104,   56,     16,
  3 |  6,  31,  48,   156,  72,   248,  84,    781,   342,   372,  108,   1248,
  4 |  8,  57,  96,   400,  16,   684, 144,   2801,   152,   114,  160,   4800,
  5 | 12, 133, 168,  1464, 216,  1862, 240,  16105,  2196,  2394,  288,  20496,
  6 | 14, 183, 252,  2380, 280,  3294, 336,  30941,  4298,  3660,  420,   2520,
  7 | 18, 307, 360,  5220, 432,  6140, 540,  88741,  6858,  7368,  576, 104400,
  8 | 20, 381, 480,  7240, 600,  9144, 640, 137561, 11060, 11430,   40, 173760,
  9 | 24, 553, 720, 12720, 768, 16590, 912, 292561, 20904, 17696, 1008, 381600,
etc.
		

Crossrefs

Cf. A008864 (column 1), A378995 (row 1).
Cf. A341606 (denominators), A341626 (numerators of the columnwise first quotients of A341605/A341606), A341627 (and their denominators), A355925, A355927.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A017665(n) = numerator(sigma(n)/n);
    A341605sq(row,col) = A017665(A246278sq(row,col));
    A341605list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341605sq(col,(a-(col-1))))); (v); };
    v341605 = A341605list(up_to);
    A341605(n) = v341605[n];

Formula

A(n, k) = A017665(A246278(n, k)).
A(n, k) = A355927(n, k) / A355925(n, k). - Antti Karttunen, Jul 22 2022
A(n, k) = A379500(n, k) / A341606(n, k). - Antti Karttunen, Jan 04 2025

A341606 Square array A(n,k) = A017666(A246278(n,k)), read by falling antidiagonals; denominator of abundancy index as applied onto prime shift array A246278.

Original entry on oeis.org

2, 4, 3, 1, 9, 5, 8, 5, 25, 7, 5, 27, 35, 49, 11, 3, 21, 125, 77, 121, 13, 7, 15, 55, 343, 143, 169, 17, 16, 11, 175, 13, 1331, 221, 289, 19, 6, 81, 65, 539, 187, 2197, 323, 361, 23, 10, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 11, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

See also comments and examples in A341605.

Examples

			The top left corner of the array:
   k=  1    2    3      4    5      6    7       8      9     10   11      12
  2k=  2    4    6      8   10     12   14      16     18     20   22      24
    |
----+--------------------------------------------------------------------------
  1 |  2,   4,   1,     8,   5,     3,   7,     16,     6,    10,  11,      2,
  2 |  3,   9,   5,    27,  21,    15,  11,     81,    75,    63,  39,      9,
  3 |  5,  25,  35,   125,  55,   175,  65,    625,   245,   275,  85,    875,
  4 |  7,  49,  77,   343,  13,   539, 119,   2401,   121,    91, 133,   3773,
  5 | 11, 121, 143,  1331, 187,  1573, 209,  14641,  1859,  2057, 253,  17303,
  6 | 13, 169, 221,  2197, 247,  2873, 299,  28561,  3757,  3211, 377,   2197,
  7 | 17, 289, 323,  4913, 391,  5491, 493,  83521,  6137,  6647, 527,  93347,
  8 | 19, 361, 437,  6859, 551,  8303, 589, 130321, 10051, 10469,  37, 157757,
  9 | 23, 529, 667, 12167, 713, 15341, 851, 279841, 19343, 16399, 943, 352843,
etc.
Arrays A341607 and A341608 give the largest prime factor (A006530) and the number of prime factors with multiplicity (A001222) of these terms. There are nonmonotonicities in both, for example, in columns 11, 12 and 14. This is illustrated below:
For column 11, with successive prime shifts of 22, we obtain:
     n sigma(n)             sigma(n)/n in lowest terms,
                            A017665(n)/A017666(n)
---------------------------------------------------------------------------
    22   36 = (2^2 * 3^2),        18/11  = (2 * 3^2)/11
    39   56 = (2^3 * 7),          56/39  = (2^3 * 7)/(3 * 13)
    85  108 = (2^2 * 3^3),       108/85  = (2^2 * 3^3)/(5 * 17)
   133  160 = (2^5 * 5),         160/133 = (2^5 * 5)/(7 * 19)
   253  288 = (2^5 * 3^2),       288/253 = (2^5 * 3^2)/(11 * 23)
   377  420 = (2^2 * 3 * 5 * 7), 420/377 = (2^2 * 3 * 5 * 7)/(13 * 29)
   527  576 = (2^6 * 3^2),       576/527 = (2^6 * 3^2)/(17 * 31)
   703  760 = (2^3 * 5 * 19),     40/37  = (2^3 * 5)/37 <-- A001222 drops!
   943 1008 = (2^4 * 3^2 * 7),  1008/943 = (2^4 * 3^2 * 7)/(23 * 41)
-
On the second last row, the denominator of 760/703 (= 40/37) has only one prime factor (instead of two), namely 37, because sigma(703) has 19 as its divisor, which otherwise would be present in the denominator.
-
For column 12, with successive prime shifts of 24, we obtain:
      n sigma(n)                        sigma(n)/n
---------------------------------------------------------------------------
     24     60 = (2^2 * 3 * 5),            5/2     = (5)/(2)
    135    240 = (2^4 * 3 * 5),           16/9     = (2^4)/(3^2)
    875   1248 = (2^5 * 3 * 13),        1248/875   = (2^5 * 3 * 13)/(5^3 * 7)
   3773   4800 = (2^6 * 3 * 5^2),       4800/3773  = (2^6 * 3 * 5^2)/(7^3 * 11)
  17303  20496 = (2^4 *3 *7 *61),      20496/17303 = (2^4 *3 *7 *61)/(11^3 * 13)
  37349  42840 = (2^3 *3^2 *5 *7 *17),  2520/2197  = (2^3 * 3^2 *5 *7)/(13^3) !!
  93347 104400 = (2^4 *3^2 *5^2 *29), 104400/93347 = (2^4 *3^2 *5^2 *29)/(17^3 *19)
-
On the second last row, the denominator of 42840/37349 (= 2520/2197) has no prime factor 17 (which would be otherwise present), because sigma(37349) has it as its divisor.
-
For column 14, with successive prime shifts of 28, we obtain:
     n sigma(n)               sigma(n)/n
---------------------------------------------------------------------------
    28   56 = (2^3 * 7),             2/1,
    99  156 = (2^2 * 3 * 13),       52/33   = (2^2 * 13)/(3 * 11)
   325  434 = (2 * 7 * 31),        434/325  = (2 * 7 * 31)/(5^2 * 13)
   833 1026 = (2 * 3^3 * 19),     1026/833  = (2 * 3^3 * 19)/(7^2 * 17)
  2299 2660 = (2^2 * 5 * 7 * 19),  140/121  = (2^2 * 5 * 7)/(11^2) <-- !!
  3887 4392 = (2^3 * 3^2 * 61),   4392/3887 = (2^3 * 3^2 * 61)/(13^2 * 23)
On the second last row, the denominator of 2660/2299 (= 140/121) has no prime factor 19 (which would be otherwise present), because sigma(2299) has it as its divisor.
Note that if A006530 does not grow, then certainly A001222 drops.
		

Crossrefs

Cf. A341605 (numerators), A341626 (numerators of the columnwise first quotients of A341605/A341606), A341627 (and their denominators), A355925, A355927.
Cf. A341607 (the largest prime factor in this array), A341608 (the number of prime factors, with multiplicity).
Cf. also A007691, A341523, A341524.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A017666(n) = denominator(sigma(n)/n);
    A341606sq(row,col) = A017666(A246278sq(row,col));
    A341606list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341606sq(col,(a-(col-1))))); (v); };
    v341606 = A341606list(up_to);
    A341606(n) = v341606[n];

Formula

A(n, k) = A017666(A246278(n, k)).
A(n, k) = A246278(n, k) / A355925(n, k). - Antti Karttunen, Jul 22 2022

A344027 Arithmetic derivative applied to prime shift array: Square array A(n,k) = A003415(A246278(n,k)), read by falling antidiagonals.

Original entry on oeis.org

1, 4, 1, 5, 6, 1, 12, 8, 10, 1, 7, 27, 12, 14, 1, 16, 10, 75, 18, 22, 1, 9, 39, 16, 147, 24, 26, 1, 32, 14, 95, 20, 363, 30, 34, 1, 21, 108, 18, 203, 28, 507, 36, 38, 1, 24, 55, 500, 24, 407, 32, 867, 42, 46, 1, 13, 51, 119, 1372, 30, 611, 40, 1083, 52, 58, 1, 44, 16, 135, 275, 5324, 36, 935, 48, 1587, 60, 62, 1
Offset: 1

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

For each column k, A343221(2*k) gives the least n (row number) where A(n,k) < A246278(n,k).
Each column is monotonic.

Examples

			The top left corner of the array:
    k = 1   2   3     4   5     6   7       8     9    10  11      12  13    14
   2k = 2   4   6     8  10    12  14      16    18    20  22      24  26    28
------+--------------------------------------------------------------------------
  n=1 | 1,  4,  5,   12,  7,   16,  9,     32,   21,   24, 13,     44, 15,   32,
    2 | 1,  6,  8,   27, 10,   39, 14,    108,   55,   51, 16,    162, 20,   75,
    3 | 1, 10, 12,   75, 16,   95, 18,    500,  119,  135, 22,    650, 24,  155,
    4 | 1, 14, 18,  147, 20,  203, 24,   1372,  275,  231, 26,   1960, 30,  287,
    5 | 1, 22, 24,  363, 28,  407, 30,   5324,  455,  495, 34,   6050, 40,  539,
    6 | 1, 26, 30,  507, 32,  611, 36,   8788,  731,  663, 42,  10816, 44,  767,
    7 | 1, 34, 36,  867, 40,  935, 46,  19652, 1007, 1071, 48,  21386, 54, 1275,
    8 | 1, 38, 42, 1083, 48, 1235, 50,  27436, 1403, 1463, 56,  31768, 60, 1539,
    9 | 1, 46, 52, 1587, 54, 1863, 60,  48668, 2175, 1955, 64,  58190, 66, 2231,
   10 | 1, 58, 60, 2523, 66, 2639, 70,  97556, 2759, 2987, 72, 102602, 76, 3219,
   11 | 1, 62, 68, 2883, 72, 3255, 74, 119164, 3663, 3503, 78, 136462, 84, 3627,
   12 | 1, 74, 78, 4107, 80, 4403, 84, 202612, 4715, 4551, 90, 219040, 96, 4847,
etc.
		

Crossrefs

Cf. A068719 (row 1).

Programs

  • PARI
    up_to = 91;
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A344027sq(row,col) = A003415(A246278sq(row,col));
    A344027list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A344027sq(col,(a-(col-1))))); (v); };
    v344027 = A344027list(up_to);
    A344027(n) = v344027[n];

A355925 Square array A(n, k) = A009194(A246278(n, k)), read by falling antidiagonals.

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 15, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Examples

			The top left corner of the array:
   k=  1  2  3  4  5  6  7  8  9 10  11  12 13  14 15 16 17 18  19  20 21
  2k=  2  4  6  8 10 12 14 16 18 20  22  24 26  28 30 32 34 36  38  40 42
-----+-----------------------------------------------------------------------
   1 | 1, 1, 6, 1, 2, 4, 2, 1, 3, 2,  2, 12, 2, 28, 6, 1, 2, 1,  2, 10, 6,
   2 | 1, 1, 3, 1, 1, 3, 3, 1, 1, 1,  1, 15, 3,  3, 3, 1, 1, 1,  3,  1, 3,
   3 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 5,  1, 1, 1, 1, 1,  5,  1, 7,
   4 | 1, 1, 1, 1, 7, 1, 1, 1, 7, 7,  1,  1, 1,  1, 7, 1, 1, 7,  1,  7, 1,
   5 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1, 19, 1, 1, 1, 1,  1,  1, 1,
   6 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 17, 1,  1, 1, 1, 1, 1,  1,  1, 1,
   7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
   8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
   9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 37, 1,  1, 1, 1, 1, 1, 31,  1, 1,
  12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1, 61, 1, 1, 1, 1,  1,  1, 1,
  16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  18 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  20 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
  21 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1, 1,  1, 1, 1, 1, 1,  1,  1, 1,
		

Crossrefs

Cf. also A341605, A341606, A341607, A341608, A341626, A341627, A355924, A355927 for related arrays of similar construction.

Programs

  • PARI
    up_to = 105;
    A009194(n) = gcd(n, sigma(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A355925sq(row,col) = A009194(A246278sq(row,col));
    A355925list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355925sq(col,(a-(col-1))))); (v); };
    v355925 = A355925list(up_to);
    A355925(n) = v355925[n];

Formula

A(n, k) = A009194(A246278(n, k)).
A(n, k) = gcd(A246278(n,k), A355927(n, k)).
A(n, k) = A355927(n, k) / A341605(n, k).
A(n, k) = A246278(n, k) / A341606(n, k).

A378979 Square array A(n, k) = 2*A246278(n, k) - sigma(A246278(n, k)), read by falling antidiagonals. Deficiency applied to the prime shift array.

Original entry on oeis.org

1, 1, 2, 0, 5, 4, 1, 6, 19, 6, 2, 14, 22, 41, 10, -4, 10, 94, 58, 109, 12, 4, 12, 38, 286, 118, 155, 16, 1, 18, 102, 70, 1198, 190, 271, 18, -3, 41, 46, 394, 158, 2014, 286, 341, 22, -2, 26, 469, 94, 1284, 214, 4606, 394, 505, 28, 8, 22, 148, 2001, 178, 2452, 350, 6478, 614, 811, 30, -12, 22, 178, 630, 13177, 262, 4842, 502, 11614, 838, 929, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2024

Keywords

Comments

Each column is strictly increasing.
For all k >= 1, A(1+A378985(k), k) > 0, and it is the topmost positive number of the column k.

Examples

			The top left corner of the array:
k=  |  1    2    3     4    5     6    7      8     9    10   11     12
2k= |  2    4    6     8   10    12   14     16    18    20   22     24
----+-------------------------------------------------------------------
  1 |  1,   1,   0,    1,   2,   -4,   4,     1,   -3,   -2,   8,   -12,
  2 |  2,   5,   6,   14,  10,   12,  18,    41,   26,   22,  22,    30,
  3 |  4,  19,  22,   94,  38,  102,  46,   469,  148,  178,  62,   502,
  4 |  6,  41,  58,  286,  70,  394,  94,  2001,  630,  476, 106,  2746,
  5 | 10, 109, 118, 1198, 158, 1284, 178, 13177, 1522, 1720, 218, 14110,
  6 | 12, 155, 190, 2014, 214, 2452, 262, 26181, 3216, 2762, 334, 31858,
  7 | 16, 271, 286, 4606, 350, 4842, 446, 78301, 5416, 5926, 478, 82294,
		

Crossrefs

Cf. A006093 (column 1), A306190 (column 2), A378978 (row 1), A378985 (row index of the topmost positive term in column n).
Cf. also arrays A341605, A341606 and A341607.
Cf. also A324055.

Programs

  • PARI
    up_to = 78;
    A033879(n) = (n+n-sigma(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A378979sq(row,col) = A033879(A246278sq(row,col));
    A378979list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A378979sq(col,(a-(col-1))))); (v); };
    v378979 = A378979list(up_to);
    A378979(n) = v378979[n];

Formula

A(n, k) = A033879(A246278(n, k)) = 2*A246278(n, k) - A355927(n, k).
A(n, k) = A372563(n,k) - A372562(n, k).

A355924 Square array A(n,k) = A342671(A246278(n,k)), read by falling antidiagonals, where A342671(x) = gcd(sigma(x), A003961(x)).

Original entry on oeis.org

3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 17, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 37, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2022

Keywords

Examples

			The top left corner of the array:
   n=  1  2  3   4  5  6  7   8  9  10 11  12  13  14 15 16 17 18 19  20 21
  2n=  2  4  6   8 10 12 14  16 18  20 22  24  26  28 30 32 34 36 38  40 42
-----+-----------------------------------------------------------------------
   1 | 3, 1, 3,  3, 3, 1, 3,  1, 3, 21, 3, 15,  3,  1, 3, 9, 3, 1, 3,  9, 3,
   2 | 1, 1, 1,  5, 1, 1, 1,  1, 1,  1, 1,  5,  1, 13, 1, 1, 5, 1, 1,  5, 1,
   3 | 1, 1, 1,  1, 1, 1, 7,  1, 1,  1, 1,  1,  1,  7, 1, 7, 1, 1, 1, 13, 7,
   4 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1, 19, 1, 1, 1, 1, 1,  1, 1,
   5 | 1, 1, 1,  1, 1, 1, 1,  1, 1, 19, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
   6 | 1, 1, 1, 17, 1, 1, 1,  1, 1,  1, 1, 17,  1,  1, 1, 1, 1, 1, 1, 17, 1,
   7 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1, 19,  1, 1, 1, 1, 1, 1, 29, 1,
   8 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
   9 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  10 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  11 | 1, 1, 1, 37, 1, 1, 1,  1, 1,  1, 1, 37,  1,  1, 1, 1, 1, 1, 1, 37, 1,
  12 | 1, 1, 1,  1, 1, 1, 1, 41, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  13 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  14 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  15 | 1, 1, 1,  1, 1, 1, 1,  1, 1, 61, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  16 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  17 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  18 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  19 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  20 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
  21 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
		

Crossrefs

Cf. also A355925, A355926, A355927 for similarly constructed arrays.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));
    A355924sq(row,col) = A342671(A246278sq(row,col));
    A355924list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355924sq(col,(a-(col-1))))); (v); };
    v355924 = A355924list(up_to);
    A355924(n) = v355924[n];

Formula

A(n,k) = A342671(A246278(n,k)).
A(n, k) = gcd(A246278(1+n,k), A355927(n, k)).

A372563 Square array A(n, k) = A246278(1+n, k) - sigma(A246278(n, k)), read by falling antidiagonals, where A246278 is the prime shift array.

Original entry on oeis.org

0, 2, 1, 3, 12, 1, 12, 11, 18, 3, 3, 85, 29, 64, 1, 17, 23, 187, 47, 36, 3, 9, 97, 19, 931, 53, 106, 1, 50, 17, 291, 75, 733, 71, 54, 3, 36, 504, 35, 889, 31, 2533, 77, 148, 5, 21, 121, 1620, 65, 1011, 111, 1639, 187, 288, 1, 3, 171, 505, 11840, 59, 2197, 119, 4927, 179, 90, 5
Offset: 1

Views

Author

Antti Karttunen, May 21 2024

Keywords

Examples

			The top left corner of the array:
k=   1    2    3      4    5      6    7       8      9     10   11      12
2k=  2    4    6      8   10     12   14      16     18     20   22      24
---+-------------------------------------------------------------------------
1  | 0,   2,   3,    12,   3,    17,   9,     50,    36,    21,   3,     75,
2  | 1,  12,  11,    85,  23,    97,  17,    504,   121,   171,  29,    635,
3  | 1,  18,  29,   187,  19,   291,  35,   1620,   505,   265,  25,   2525,
4  | 3,  64,  47,   931,  75,   889,  65,  11840,   795,  1259,  93,  12503,
5  | 1,  36,  53,   733,  31,  1011,  59,  12456,  1561,   817,  89,  16853,
6  | 3, 106,  71,  2533, 111,  2197, 157,  52580,  1839,  2987, 107,  50507,
7  | 1,  54,  77,  1639, 119,  2163,  49,  41580,  3193,  3101, 127,  53357,
8  | 3, 148, 187,  4927, 113,  6197, 211, 142280,  8283,  4969, 183, 179083,
9  | 5, 288, 179, 11669, 305,  9481, 277, 414720,  6965, 13421, 239, 374459,
10 | 1,  90, 187,  4531, 131,  7685,  73, 190980, 12649,  6303, 137, 293947,
11 | 5, 376, 301, 19869, 247, 18395, 331, 919856, 17173, 17161, 425, 906981,
12 | 3, 274, 167, 16861, 255, 13189, 349, 899540, 10335, 17099, 367, 777083,
		

Crossrefs

Cf. A046933 (column 1).
Cf. also A355924, A372562.

Programs

  • PARI
    up_to = 66;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A286385(n) = (A003961(n)-sigma(n));
    A372563sq(row,col) = A286385(A246278sq(row,col));
    A372563list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372563sq(col,(a-(col-1))))); (v); };
    v372563 = A372563list(up_to);
    A372563(n) = v372563[n];

Formula

A(n, k) = A286385(A246278(n, k)) = A246278(1+n, k) - A355927(n, k).

A379499 Square array A(n, k) = A064987(A246278(n, k)), read by falling antidiagonals; A064987(n) = n*sigma(n), applied to the prime shift array.

Original entry on oeis.org

6, 28, 12, 72, 117, 30, 120, 360, 775, 56, 180, 1080, 1680, 2793, 132, 336, 672, 19500, 7392, 16093, 182, 336, 3510, 3960, 137200, 24024, 30927, 306, 496, 1584, 43400, 10192, 1948584, 55692, 88723, 380, 702, 9801, 5460, 368676, 40392, 5228860, 116280, 137541, 552, 840, 9300, 488125, 17136, 2928926, 69160, 25645860, 209760, 292537, 870
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2025

Keywords

Comments

Each column is strictly monotonic.

Examples

			The top left corner of the array:
k=|   1      2      3        4      5        6      7          8        9       10
2k|   2      4      6        8     10       12     14         16       18       20
--+---------------------------------------------------------------------------------
1 |   6,    28,    72,     120,   180,     336,   336,       496,     702,     840,
2 |  12,   117,   360,    1080,   672,    3510,  1584,      9801,    9300,    6552,
3 |  30,   775,  1680,   19500,  3960,   43400,  5460,    488125,   83790,  102300,
4 |  56,  2793,  7392,  137200, 10192,  368676, 17136,   6725201,  901208,  508326,
5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458,
		

Crossrefs

Elementwise product of arrays A246278 and A355927.

Programs

  • PARI
    up_to = 55;
    A064987(n) = (n*sigma(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379499sq(row,col) = A064987(A246278sq(row,col));
    A379499list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379499sq(col,(a-(col-1))))); (v); };
    v379499 = A379499list(up_to);
    A379499(n) = v379499[n];

Formula

A(n, k) = A246278(n, k) * A355927(n, k).
Showing 1-10 of 10 results.