cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A008438 Sum of divisors of 2*n + 1.

Original entry on oeis.org

1, 4, 6, 8, 13, 12, 14, 24, 18, 20, 32, 24, 31, 40, 30, 32, 48, 48, 38, 56, 42, 44, 78, 48, 57, 72, 54, 72, 80, 60, 62, 104, 84, 68, 96, 72, 74, 124, 96, 80, 121, 84, 108, 120, 90, 112, 128, 120, 98, 156, 102, 104, 192, 108, 110, 152, 114, 144, 182, 144, 133, 168
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways of writing n as the sum of 4 triangular numbers.
Bisection of A000203. - Omar E. Pol, Mar 14 2012
a(n) is also the total number of parts in all partitions of 2*n + 1 into equal parts. - Omar E. Pol, Feb 14 2021

Examples

			Divisors of 9 are 1,3,9, so a(4)=1+3+9=13.
F_2(z) = eta(4z)^8/eta(2z)^4 = q + 4q^3 + 6q^5 +8q^7 + 13q^9 + ...
G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 13*x^4 + 12*x^5 + 14*x^6 + 24*x^7 + 18*x^8 + 20*x^9 + ...
B(q) = q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139 Ex. (iii).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 19 eq. (6), and p. 283 eq. (8).
  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 12.
  • H. M. Farkas, I. Kra, Cosines and triangular numbers, Rev. Roumaine Math. Pures Appl., 46 (2001), 37-43.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.31).
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 184, Prop. 4, F(z).
  • G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ. Press, 1954, page 92 ff.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Haskell
    a008438 = a000203 . a005408  -- Reinhard Zumkeller, Sep 22 2014
    
  • Magma
    Basis( ModularForms( Gamma0(4), 2), 124) [2]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    [DivisorSigma(1, 2*n+1): n in [0..70]]; // Vincenzo Librandi, Aug 01 2017
  • Maple
    A008438 := proc(n) numtheory[sigma](2*n+1) ; end proc: # R. J. Mathar, Mar 23 2011
  • Mathematica
    DivisorSigma[1, 2 # + 1] & /@ Range[0, 61] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ D[ Series[ Log[ QPochhammer[ -x] / QPochhammer[ x]], {x, 0, 2 n + 1}], x], {x, 0 , 2n}]; (* Michael Somos, Oct 15 2019 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 2*n + 1))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n; polcoeff( sum( k=1, (sqrtint( 4*n + 1) + 1)\2, x^(k^2 - k), x * O(x^n))^4, n))}; /* Michael Somos, Sep 17 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / eta(x^2 + A))^4, n))}; /* Michael Somos, Sep 17 2004 */
    
  • Sage
    ModularForms( Gamma0(4), 2, prec=124).1;  # Michael Somos, Jun 12 2014
    

Formula

Expansion of q^(-1/2) * (eta(q^2)^2 / eta(q))^4 = psi(q)^4 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Apr 11 2004
Expansion of Jacobi theta_2(q)^4 / (16*q) in powers of q^2. - Michael Somos, Apr 11 2004
Euler transform of period 2 sequence [4, -4, 4, -4, ...]. - Michael Somos, Apr 11 2004
a(n) = b(2*n + 1) where b() is multiplicative and b(2^e) = 0^n, b(p^e) =(p^(e+1) - 1) / (p - 1) if p>2. - Michael Somos, Jul 07 2004
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 8*w*v^2 + 16*w^2*v - u^2*w - Michael Somos, Apr 08 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3), B(q^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2).
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^3 + u1^2*u6 + 3*u2*u3^2 + 27*u6^3 - u1*u2*u3 - 3*u1*u3*u6 - 7*u2^2*u6 - 21*u2*u6^2. - Michael Somos, May 30 2005
G.f.: Sum_{k>=0} (2k + 1) * x^k / (1 - x^(2k + 1)).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004
G.f. Sum_{k>=0} a(k) * x^(2*k + 1) = x * (Product_{k>0} (1 - x^(4*k))^2 / (1 - x^(2*k)))^4 = x * (Sum_{k>0} x^(k^2 - k))^4 = Sum_{k>0} k * (x^k / (1 - x^k) - 3 * x^(2*k) / (1 - x^(2*k)) + 2 * x^(4*k) / (1 - x^(4*k))). - Michael Somos, Jul 07 2004
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in positive odd integers. - Michael Somos, Apr 11 2004
8 * a(n) = A005879(n) = A000118(2*n + 1). 16 * a(n) = A129588(n). a(n) = A000593(2*n + 1) = A115607(2*n + 1).
a(n) = A000203(2*n+1). - Omar E. Pol, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A096727. Michael Somos, Jun 12 2014
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 4*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017
From Peter Bala, Jan 10 2021: (Start)
a(n) = A002131(2*n+1).
G.f.: Sum_{n >= 0} x^n*(1 + x^(2*n+1))/(1 - x^(2*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 8. - Vaclav Kotesovec, Aug 07 2022
Convolution of A125061 and A138741. - Michael Somos, Mar 04 2023

Extensions

Comments from Len Smiley, Enoch Haga

A224613 a(n) = sigma(6*n).

Original entry on oeis.org

12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648
Offset: 1

Views

Author

Zak Seidov, Apr 22 2013

Keywords

Comments

Conjectures: sigma(6n) > sigma(6n - 1) and sigma(6n) > sigma(6n + 1).
Conjectures are false. Try prime 73961483429 for n. One finds sigma(6*73961483429) < sigma(6*73961483429+1). The number n = 105851369791 provides a counterexample for the other case. - T. D. Noe, Apr 22 2013
Sum of the divisors of the numbers k which have the property that the width associated to the vertex of the first (also the last) valley of the smallest Dyck path of the symmetric representation of sigma(k) is equal to 2 (see example). Other positive integers have width 0 or 1 associated to the mentioned valley. - Omar E. Pol, Aug 11 2021

Examples

			From _Omar E. Pol_, Aug 11 2021: (Start)
Illustration of initial terms:
----------------------------------------------------------------------
   n    6*n   a(n)    Diagram:  1           2           3           4
----------------------------------------------------------------------
                                _           _           _           _
                               | |         | |         | |         | |
                               | |         | |         | |         | |
                          * _ _| |         | |         | |         | |
                           |  _ _|         | |         | |         | |
                      _ _ _| |_|           | |         | |         | |
   1     6     12    |_ _ _ _|      * _ _ _| |         | |         | |
                                    _|  _ _ _|         | |         | |
                                * _|  _| |             | |         | |
                                 |  _|  _|    * _ _ _ _| |         | |
                                 | |_ _|       |  _ _ _ _|         | |
                      _ _ _ _ _ _| |          _| | |               | |
   2    12     28    |_ _ _ _ _ _ _|        _|  _|_|    * _ _ _ _ _| |
                                      * _ _|  _|         |  _ _ _ _ _|
                                       |  _ _|        _ _| | |
                                       | |_ _|      _|  _ _| |
                                       | |        _|  _|  _ _|
                      _ _ _ _ _ _ _ _ _| |       |  _|  _|
   3    18     39    |_ _ _ _ _ _ _ _ _ _|  * _ _| |  _|
                                             |  _ _| |
                                             | |_ _ _|
                                             | |
                                             | |
                      _ _ _ _ _ _ _ _ _ _ _ _| |
   4    24     60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3).
a(n) equals the area (also the number of cells) in the n-th diagram. (End)
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), this sequence (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A000203 (sigma(n)), A053224 (n: sigma(n) < sigma(n+1)).
Cf. A067825 (even n: sigma(n)< sigma(n+1)).

Programs

  • Mathematica
    DivisorSigma[1,6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)
  • PARI
    a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013
    
  • Python
    from sympy import divisor_sigma
    def a(n):  return divisor_sigma(6*n)
    print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A224613(n): return prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(n))+Counter([2,3])).items()) # Chai Wah Wu, Sep 07 2023

Formula

a(n) = A000203(6n).
a(n) = A000203(A008588(n)). - Omar E. Pol, Aug 11 2021
Sum_{k=1..n} a(k) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Corrected by Harvey P. Dale, Apr 16 2016

A239050 a(n) = 4*sigma(n).

Original entry on oeis.org

4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

4 times the sum of divisors of n.
a(n) is also the total number of horizontal cells in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every three-dimensional quadrant arises after the 90-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a square formed by four cells (see links and examples). - Omar E. Pol, Jul 04 2016

Examples

			For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
.
Illustration of initial terms:                                    _ _ _ _ _ _
.                                           _ _ _ _ _ _          |_|_|_|_|_|_|
.                           _ _ _ _       _|_|_|_|_|_|_|_     _ _|           |_ _
.             _ _ _ _     _|_|_|_|_|_    |_|_|       |_|_|   |_|               |_|
.     _ _    |_|_|_|_|   |_|       |_|   |_|           |_|   |_|               |_|
.    |_|_|   |_|   |_|   |_|       |_|   |_|           |_|   |_|               |_|
.    |_|_|   |_|_ _|_|   |_|       |_|   |_|           |_|   |_|               |_|
.            |_|_|_|_|   |_|_ _ _ _|_|   |_|_         _|_|   |_|               |_|
.                          |_|_|_|_|     |_|_|_ _ _ _|_|_|   |_|_             _|_|
.                                          |_|_|_|_|_|_|         |_ _ _ _ _ _|
.                                                                |_|_|_|_|_|_|
.
n:     1          2             3                4                     5
S(n):  1          3             4                7                     6
a(n):  4         12            16               28                    24
.
For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
		

Crossrefs

Alternating row sums of A239662.
Partial sums give A243980.
k times sigma(n), k=1..6: A000203, A074400, A272027, this sequence, A274535, A274536.
k times sigma(n), k = 1..10: A000203, A074400, A272027, this sequence, A274535, A274536, A319527, A319528, A325299, A326122.

Programs

  • Magma
    [4*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
  • Maple
    with(numtheory): seq(4*sigma(n), n=1..64); # Omar E. Pol, Jul 04 2016
  • Mathematica
    Array[4 DivisorSigma[1, #] &, 64] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    a(n) = 4 * sigma(n); \\ Omar E. Pol, Jul 04 2016
    

Formula

a(n) = 4*A000203(n) = 2*A074400(n).
a(n) = A000203(n) + A272027(n). - Omar E. Pol, Jul 04 2016
Dirichlet g.f.: 4*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
Conjecture: a(n) = sigma(3*n) = A144613(n) iff n is not a multiple of 3. - Omar E. Pol, Oct 02 2018
The conjecture above is correct. Write n = 3^e*m, gcd(3, m) = 1, then sigma(3*n) = sigma(3^(e+1))*sigma(m) = ((3^(e+2) - 1)/2)*sigma(m) = ((3^(e+2) - 1)/(3^(e+1) - 1))*sigma(3^e*m), and (3^(e+2) - 1)/(3^(e+1) - 1) = 4 if and only if e = 0. - Jianing Song, Feb 03 2019

A272027 a(n) = 3*sigma(n).

Original entry on oeis.org

3, 9, 12, 21, 18, 36, 24, 45, 39, 54, 36, 84, 42, 72, 72, 93, 54, 117, 60, 126, 96, 108, 72, 180, 93, 126, 120, 168, 90, 216, 96, 189, 144, 162, 144, 273, 114, 180, 168, 270, 126, 288, 132, 252, 234, 216, 144, 372, 171, 279, 216, 294, 162, 360, 216, 360, 240, 270, 180, 504, 186, 288, 312, 381
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2016

Keywords

Comments

3 times the sum of the divisors of n.
From Omar E. Pol, Jul 04 2016: (Start)
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every 120-degree three-dimensional sector arises after the 120-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a hexagon formed by three rhombuses (see Links section).
More generally, if k >= 3 then k*sigma(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid where the structure of every 360/k three-dimensional sector arises after the 360/k-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. If k >= 5 the top of the pyramid is a k-pointed star formed by k rhombuses. (End)

Crossrefs

Alternating row sums of triangle A272026.
k times sigma(n), k = 1..10: A000203, A074400, this sequence, A239050, A274535, A274536, A319527, A319528, A325299, A326122.

Programs

  • Magma
    [3*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
  • Maple
    with(numtheory): seq(3*sigma(n), n=1..64);
  • Mathematica
    Table[3 DivisorSigma[1, n], {n, 64}] (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    a(n) = 3 * sigma(n);
    

Formula

a(n) = 3*A000203(n) = A000203(n) + A074400(n) = A239050(n) - A000203(n).
Dirichlet g.f.: 3*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
a(n) = A274536(n)/2. - Antti Karttunen, Nov 16 2017
From Omar E. Pol, Oct 02 2018: (Start)
Conjecture 1: a(n) = sigma(2*n) = A062731(n) iff n is odd.
And more generally:
Conjecture 2: If p is prime then (p + 1)*sigma(n) = sigma(p*n) iff n is not a multiple of p. (End)
The above claims easily follow from the fact that sigma is multiplicative function, thus if p does not divide n, then sigma(p*n) = sigma(p)*sigma(n). - Antti Karttunen, Nov 21 2019

A193553 Sum of divisors of 4*n.

Original entry on oeis.org

7, 15, 28, 31, 42, 60, 56, 63, 91, 90, 84, 124, 98, 120, 168, 127, 126, 195, 140, 186, 224, 180, 168, 252, 217, 210, 280, 248, 210, 360, 224, 255, 336, 270, 336, 403, 266, 300, 392, 378, 294, 480, 308, 372, 546, 360, 336, 508, 399, 465, 504, 434, 378, 600, 504, 504, 560, 450, 420, 744, 434, 480, 728, 511, 588, 720
Offset: 1

Views

Author

Joerg Arndt, Jul 30 2011

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), this sequence (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).

Programs

  • Mathematica
    DivisorSigma[1,4*Range[70]] (* Harvey P. Dale, Jan 27 2015 *)
  • PARI
    vector(66, n, sigma(4*n, 1))

Formula

a(n) = sigma(4*n) = A000203(4*n).
a(n) = 3*sigma(2*n) - 2*sigma(n); the relation is the special case e=1, p=2 of the relation sigma(t^2*n) = (t+1)*sigma(t*n) - t*sigma(n) where t=p^e (p a prime).
G.f. is x times the logarithmic derivative of the g.f. of A182820.
a(2*n-1) = 7 * A008438(n) = 7 * sigma(2*n-1); special case of sigma(2^k*(2*n-1)) = (2^(k+1)-1) * sigma(2*n-1).
Sum_{k=1..n} a(k) = (11*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 4))/(1 - x^(k/gcd(k, 4))). - Miles Wilson, Sep 29 2024

A144613 a(n) = sigma(3*n) = A000203(3*n).

Original entry on oeis.org

4, 12, 13, 28, 24, 39, 32, 60, 40, 72, 48, 91, 56, 96, 78, 124, 72, 120, 80, 168, 104, 144, 96, 195, 124, 168, 121, 224, 120, 234, 128, 252, 156, 216, 192, 280, 152, 240, 182, 360, 168, 312, 176, 336, 240, 288, 192, 403, 228, 372, 234, 392, 216, 363, 288, 480, 260, 360
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2009

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), this sequence (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 3*n]; Array[a, 60] (* Amiram Eldar, Dec 16 2022 *)
  • PARI
    vector(66, n, sigma(3*n, 1)) \\ Joerg Arndt, Jul 30 2011

Formula

a(n) = A000203(n) + 3*A078708(n). - R. J. Mathar, May 19 2020
Sum_{k=1..n} a(k) = (11*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Zero removed and offset corrected by Seiichi Manyama, Feb 28 2017

A182818 G.f.: exp( Sum_{n>=1} sigma(2n)*x^n/n ).

Original entry on oeis.org

1, 3, 8, 19, 41, 83, 161, 299, 538, 942, 1610, 2694, 4427, 7153, 11387, 17884, 27741, 42543, 64565, 97034, 144519, 213432, 312720, 454803, 656835, 942364, 1343596, 1904354, 2684008, 3762667, 5248002, 7284132, 10063319, 13841107, 18956002
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(2n) = A000203(2n), the sum of divisors of 2n (A062731).
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).
Number of partitions of n where there are 2 kinds of even parts and 3 kinds of odd parts. - Ilya Gutkovskiy, Jan 17 2018

Examples

			G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...
log(A(x)) = 3*x + 7*x^2/2 + 12*x^3/3 + 15*x^4/4 + 18*x^5/5 + 28*x^6/6 + 24*x^7/7 + 31*x^8/8 + ... + sigma(2n)*x^n/n + ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(add((-1)^k*numbpart(k)*numbpart(2*n - k), k = 0..2*n), n = 0..40);
  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
    nmax = 40; CoefficientList[Series[Product[(1+x^k)/(1-x^k)^2, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(2*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    x='x+O('x^66); Vec(eta(x^2)/eta(x)^3) \\ Joerg Arndt, Dec 05 2010

Formula

G.f.: A(x) = E(x^2)/E(x)^3 where E(x)=Product_{n>=1} (1 - x^n). - Joerg Arndt, Dec 05 2010
Conjecture: exp( Sum_{n>=1} sigma(s*n)*x^n/n ) == Product_{d|s} eta(x^d)^(-moebius(d)*sigma(s/d)). - Joerg Arndt, Dec 05 2010
The ordinary generating function A(x) is the infinite product F(x) * F(x^2) * F(x^3) * ..., where F(x) is the ordinary generating function of A005408. - Gary W. Adamson, Jul 15 2012
a(n) ~ 5^(3/4) * exp(Pi*sqrt(5*n/3)) / (16 * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Nov 29 2015
From Peter Bala, Jan 24 2016: (Start)
a(n) = Sum_{k = 0..2*n} (-1)^k*p(k)*p(2*n-k), where p(n) = A000041(n) is the partition function.
A(x^2) = 1/Product_{n>=1} (1 - (-x)^n) * 1/Product_{n>=1} (1 - x^n). (End)
G.f.: A(x) = Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 follows directly from the above formula by Joerg Arndt. - Paul D. Hanna, Dec 07 2018

A283078 a(n) = sigma(7*n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 57, 120, 104, 144, 96, 224, 112, 171, 192, 248, 144, 312, 160, 336, 228, 288, 192, 480, 248, 336, 320, 399, 240, 576, 256, 504, 384, 432, 342, 728, 304, 480, 448, 720, 336, 684, 352, 672, 624, 576, 384, 992, 400, 744, 576, 784, 432, 960
Offset: 1

Views

Author

Seiichi Manyama, Feb 28 2017

Keywords

Examples

			For n = 3, the divisors of 3*7 are {1, 3, 7, 21}. Now, 1 + 3 + 7 + 21 = 32. So, a(3) = 32. - _Indranil Ghosh_, Feb 28 2017
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), this sequence (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008589.

Programs

Formula

From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(7*n) = A000203(A008589(n)).
Sum_{k=1..n} a(k) = (55*Pi^2/84) * n^2 + O(n*log(n)). (End)
Showing 1-10 of 35 results. Next