A221529
Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1
Triangle begins:
------------------------------------------------------
n| k 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------
1| 1;
2| 1, 3;
3| 2, 3, 4;
4| 3, 6, 4, 7;
5| 5, 9, 8, 7, 6;
6| 7, 15, 12, 14, 6, 12;
7| 11, 21, 20, 21, 12, 12, 8;
8| 15, 33, 28, 35, 18, 24, 8, 15;
9| 22, 45, 44, 49, 30, 36, 16, 15, 13;
10| 30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
k A000203 T(10,k)
1 1 * 30 = 30
2 3 * 22 = 66
3 4 * 15 = 60
4 7 * 11 = 77
5 6 * 7 = 42
6 12 * 5 = 60
7 8 * 3 = 24
8 15 * 2 = 30
9 13 * 1 = 13
10 18 * 1 = 18
A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
_ _ _ _ _ _ _ _ _ _
42 |_ _ _ _ _ |
|_ _ _ _ _|_ |
|_ _ _ _ _ _|_ |
|_ _ _ _ | |
|_ _ _ _|_ _ _|_ |
|_ _ _ _ | |
|_ _ _ _|_ | |
|_ _ _ _ _|_ | |
|_ _ _ | | |
|_ _ _|_ | | |
|_ _ | | | |
|_ _|_ _|_ _|_ _|_ | _
30 |_ _ _ _ _ | | | | 30
|_ _ _ _ _|_ | | | |
|_ _ _ | | | | |
|_ _ _|_ _ _|_ | | | |
|_ _ _ _ | | | | |
|_ _ _ _|_ | | | | |
|_ _ _ | | | | | |
|_ _ _|_ _|_ _|_ | | _|_|
22 |_ _ _ _ | | | | | 22
|_ _ _ _|_ | | | | |
|_ _ _ _ _|_ | | | | |
|_ _ _ | | | | | |
|_ _ _|_ | | | | | |
|_ _ | | | | | | |
|_ _|_ _|_ _|_ | | | _|_ _|
15 |_ _ _ _ | | | | | | | 15
|_ _ _ _|_ | | | | | | |
|_ _ _ | | | | | | | |
|_ _ _|_ _|_ | | | | _|_|_ _|
11 |_ _ _ | | | | | | | | 11
|_ _ _|_ | | | | | | | |
|_ _ | | | | | | | | |
|_ _|_ _|_ | | | | | _| |_ _ _|
7 |_ _ _ | | | | | | | | | 7
|_ _ _|_ | | | | | | _|_ _|_ _ _|
5 |_ _ | | | | | | | | | | | 5
|_ _|_ | | | | | | | _| | |_ _ _ _|
3 |_ _ | | | | | | | | _|_ _|_|_ _ _ _| 3
2 |_ | | | | | | | | | _ _|_ _|_|_ _ _ _ _| 2
1 |_|_|_|_|_|_|_|_|_|_| |_ _|_|_|_ _ _ _ _ _| 1
.
Figure 1. Figure 2.
Front view of the Lateral view
prism of partitions. of the tower.
.
. _ _ _ _ _ _ _ _ _ _
| | | | | | | | |_| 1
| | | | | | |_|_ _| 2
| | | | |_|_ |_ _| 3
| | |_|_ |_ _ _| 4
| |_ _ |_ |_ _ _| 5
|_ _ |_ |_ _ _ _| 6
|_ | |_ _ _ _| 7
|_ |_ _ _ _ _| 8
| | 9
|_ _ _ _ _ _| 10
.
Figure 3.
Top view
of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened)
- T. J. Osler, A. Hassen and T. R. Chandrupatia, Surprising connections between partitions and divisors, The College Mathematics Journal, Vol. 38. No. 4, Sep. 2007, 278-287 (see p. 287).
- Omar E. Pol, Illustration of the prism, the tower and the 10th row of the triangle
Cf.
A000070,
A000203,
A026792,
A027293,
A135010,
A138137,
A176206,
A182703,
A220909,
A211992,
A221649,
A236104,
A237270,
A237271,
A237593,
A245092,
A245093,
A245095,
A245099,
A262626,
A336811,
A336812,
A338156,
A339278,
A340035,
A340583,
A340584,
A345023,
A346741.
-
nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
-
T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013
A074400
Sum of the even divisors of 2n.
Original entry on oeis.org
2, 6, 8, 14, 12, 24, 16, 30, 26, 36, 24, 56, 28, 48, 48, 62, 36, 78, 40, 84, 64, 72, 48, 120, 62, 84, 80, 112, 60, 144, 64, 126, 96, 108, 96, 182, 76, 120, 112, 180, 84, 192, 88, 168, 156, 144, 96, 248, 114, 186, 144, 196, 108, 240, 144, 240, 160, 180, 120, 336, 124, 192
Offset: 1
The even divisors of 12 are 12, 6, 4, 2, which sum to 24, so a(6) = 24.
Cf.
A146076, which includes the zeros for odd n.
-
with(numtheory): seq(2*sigma(n),n=1..65);
-
f[n_] := Plus @@ Select[ Divisors[ 2n], EvenQ]; Array[f, 62] (* Robert G. Wilson v, Apr 09 2011 *)
-
a(n) = 2 * sigma(n); \\ Joerg Arndt, Apr 14 2013
-
a(n) = sumdiv(2*n, d, !(d%2) * d); \\ Michel Marcus, Jan 23 2014
A239050
a(n) = 4*sigma(n).
Original entry on oeis.org
4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508
Offset: 1
For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
.
Illustration of initial terms: _ _ _ _ _ _
. _ _ _ _ _ _ |_|_|_|_|_|_|
. _ _ _ _ _|_|_|_|_|_|_|_ _ _| |_ _
. _ _ _ _ _|_|_|_|_|_ |_|_| |_|_| |_| |_|
. _ _ |_|_|_|_| |_| |_| |_| |_| |_| |_|
. |_|_| |_| |_| |_| |_| |_| |_| |_| |_|
. |_|_| |_|_ _|_| |_| |_| |_| |_| |_| |_|
. |_|_|_|_| |_|_ _ _ _|_| |_|_ _|_| |_| |_|
. |_|_|_|_| |_|_|_ _ _ _|_|_| |_|_ _|_|
. |_|_|_|_|_|_| |_ _ _ _ _ _|
. |_|_|_|_|_|_|
.
n: 1 2 3 4 5
S(n): 1 3 4 7 6
a(n): 4 12 16 28 24
.
For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
k times sigma(n), k = 1..10:
A000203,
A074400,
A272027, this sequence,
A274535,
A274536,
A319527,
A319528,
A325299,
A326122.
Cf.
A008438,
A017113,
A062731,
A112610,
A144613,
A193553,
A196020,
A235791,
A236104,
A237270,
A237593,
A239052,
A239053,
A239660,
A239662,
A244050,
A262626.
A078181
a(n) = Sum_{d|n, d == 1 (mod 3)} d.
Original entry on oeis.org
1, 1, 1, 5, 1, 1, 8, 5, 1, 11, 1, 5, 14, 8, 1, 21, 1, 1, 20, 15, 8, 23, 1, 5, 26, 14, 1, 40, 1, 11, 32, 21, 1, 35, 8, 5, 38, 20, 14, 55, 1, 8, 44, 27, 1, 47, 1, 21, 57, 36, 1, 70, 1, 1, 56, 40, 20, 59, 1, 15, 62, 32, 8, 85, 14, 23, 68, 39, 1, 88, 1, 5, 74, 38, 26, 100, 8, 14, 80, 71, 1
Offset: 1
-
A078181 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if modp(d,3) =1 then
a :=a+d ;
end if;
end do:
a;
end proc: # R. J. Mathar, May 11 2016
-
a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 1 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)
A339106
Triangle read by rows: T(n,k) = A000203(n-k+1)*A000041(k-1), n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 3, 1, 4, 3, 2, 7, 4, 6, 3, 6, 7, 8, 9, 5, 12, 6, 14, 12, 15, 7, 8, 12, 12, 21, 20, 21, 11, 15, 8, 24, 18, 35, 28, 33, 15, 13, 15, 16, 36, 30, 49, 44, 45, 22, 18, 13, 30, 24, 60, 42, 77, 60, 66, 30, 12, 18, 26, 45, 40, 84, 66, 105, 88, 90, 42, 28, 12, 36, 39, 75, 56, 132, 90, 154, 120, 126, 56
Offset: 1
Triangle begins:
1;
3, 1;
4, 3, 2;
7, 4, 6, 3;
6, 7, 8, 9, 5;
12, 6, 14, 12, 15, 7;
8, 12, 12, 21, 20, 21, 11;
15, 8, 24, 18, 35, 28, 33, 15;
13, 15, 16, 36, 30, 49, 44, 45, 22;
18, 13, 30, 24, 60, 42, 77, 60, 66, 30;
12, 18, 26, 45, 40, 84, 66, 105, 88, 90, 42;
28, 12, 36, 39, 75, 56, 132, 90, 154, 120, 126, 56;
...
For n = 6 the calculation of every term of row 6 is as follows:
-------------------------
k A000041 T(6,k)
1 1 * 12 = 12
2 1 * 6 = 6
3 2 * 7 = 14
4 3 * 4 = 12
5 5 * 3 = 15
6 7 * 1 = 7
. A000203
-------------------------
The sum of row 6 is 12 + 6 + 14 + 12 + 15 + 7 = 66, equaling A066186(6).
Row sums give
A066186 (conjectured).
-
T[n_, k_] := DivisorSigma[1, n - k + 1] * PartitionsP[k - 1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jan 08 2021 *)
-
T(n, k) = sigma(n-k+1)*numbpart(k-1); \\ Michel Marcus, Jan 08 2021
A274535
a(n) = 5*sigma(n).
Original entry on oeis.org
5, 15, 20, 35, 30, 60, 40, 75, 65, 90, 60, 140, 70, 120, 120, 155, 90, 195, 100, 210, 160, 180, 120, 300, 155, 210, 200, 280, 150, 360, 160, 315, 240, 270, 240, 455, 190, 300, 280, 450, 210, 480, 220, 420, 390, 360, 240, 620, 285, 465, 360, 490, 270, 600, 360, 600, 400, 450, 300, 840, 310, 480, 520, 635
Offset: 1
-
with(numtheory): seq(5*sigma(n), n=1..64);
-
Table[5 DivisorSigma[1, n], {n, 64}] (* Michael De Vlieger, Jul 04 2016 *)
-
a(n) = 5 * sigma(n);
A274536
a(n) = 6 * sigma(n).
Original entry on oeis.org
6, 18, 24, 42, 36, 72, 48, 90, 78, 108, 72, 168, 84, 144, 144, 186, 108, 234, 120, 252, 192, 216, 144, 360, 186, 252, 240, 336, 180, 432, 192, 378, 288, 324, 288, 546, 228, 360, 336, 540, 252, 576, 264, 504, 468, 432, 288, 744, 342, 558, 432, 588, 324, 720, 432, 720, 480, 540, 360, 1008, 372, 576, 624, 762
Offset: 1
-
with(numtheory): seq(6*sigma(n), n=1..64);
-
6DivisorSigma[1, Range[50]] (* Alonso del Arte, Jul 04 2016 *)
-
a(n) = 6 * sigma(n);
A319527
a(n) = 7 * sigma(n).
Original entry on oeis.org
7, 21, 28, 49, 42, 84, 56, 105, 91, 126, 84, 196, 98, 168, 168, 217, 126, 273, 140, 294, 224, 252, 168, 420, 217, 294, 280, 392, 210, 504, 224, 441, 336, 378, 336, 637, 266, 420, 392, 630, 294, 672, 308, 588, 546, 504, 336, 868, 399, 651, 504, 686, 378, 840, 504, 840, 560, 630, 420, 1176, 434, 672, 728, 889
Offset: 1
-
List([1..70],n->7*Sigma(n)); # Muniru A Asiru, Sep 28 2018
-
with(numtheory): seq(7*sigma(n), n=1..64);
-
7*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Mar 14 2020 *)
-
a(n) = 7 * sigma(n);
A319528
a(n) = 8 * sigma(n).
Original entry on oeis.org
8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1
-
List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
-
with(numtheory): seq(8*sigma(n), n=1..64);
-
8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
-
a(n) = 8 * sigma(n);
A246910
Numbers n such that sigma(n+sigma(n)) = 3*sigma(n).
Original entry on oeis.org
1, 7, 26, 30, 42, 54, 69, 78, 84, 94, 102, 103, 114, 138, 140, 174, 222, 258, 354, 364, 474, 476, 498, 520, 532, 534, 582, 618, 644, 650, 762, 764, 812, 834, 847, 894, 978, 1002, 1036, 1038, 1050, 1182, 1185, 1194, 1204, 1214, 1362, 1372, 1398, 1434, 1487
Offset: 1
Number 26 (with sigma(26) = 42) is in sequence because sigma(26+sigma(26)) = sigma(68) = 126 = 3*42.
-
[n:n in[1..10000] | SumOfDivisors(n+SumOfDivisors(n)) eq 3*SumOfDivisors(n)]
-
with(numtheory): A246910:=n->`if`(sigma(n+sigma(n)) = 3*sigma(n),n,NULL): seq(A246910(n), n=1..5000); # Wesley Ivan Hurt, Sep 07 2014
-
for(n=1,10^4,if(sigma(n+sigma(n))==3*sigma(n),print1(n,", "))) \\ Derek Orr, Sep 07 2014
Showing 1-10 of 23 results.
Comments