A239050
a(n) = 4*sigma(n).
Original entry on oeis.org
4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508
Offset: 1
For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
.
Illustration of initial terms: _ _ _ _ _ _
. _ _ _ _ _ _ |_|_|_|_|_|_|
. _ _ _ _ _|_|_|_|_|_|_|_ _ _| |_ _
. _ _ _ _ _|_|_|_|_|_ |_|_| |_|_| |_| |_|
. _ _ |_|_|_|_| |_| |_| |_| |_| |_| |_|
. |_|_| |_| |_| |_| |_| |_| |_| |_| |_|
. |_|_| |_|_ _|_| |_| |_| |_| |_| |_| |_|
. |_|_|_|_| |_|_ _ _ _|_| |_|_ _|_| |_| |_|
. |_|_|_|_| |_|_|_ _ _ _|_|_| |_|_ _|_|
. |_|_|_|_|_|_| |_ _ _ _ _ _|
. |_|_|_|_|_|_|
.
n: 1 2 3 4 5
S(n): 1 3 4 7 6
a(n): 4 12 16 28 24
.
For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
k times sigma(n), k = 1..10:
A000203,
A074400,
A272027, this sequence,
A274535,
A274536,
A319527,
A319528,
A325299,
A326122.
Cf.
A008438,
A017113,
A062731,
A112610,
A144613,
A193553,
A196020,
A235791,
A236104,
A237270,
A237593,
A239052,
A239053,
A239660,
A239662,
A244050,
A262626.
A272027
a(n) = 3*sigma(n).
Original entry on oeis.org
3, 9, 12, 21, 18, 36, 24, 45, 39, 54, 36, 84, 42, 72, 72, 93, 54, 117, 60, 126, 96, 108, 72, 180, 93, 126, 120, 168, 90, 216, 96, 189, 144, 162, 144, 273, 114, 180, 168, 270, 126, 288, 132, 252, 234, 216, 144, 372, 171, 279, 216, 294, 162, 360, 216, 360, 240, 270, 180, 504, 186, 288, 312, 381
Offset: 1
Alternating row sums of triangle
A272026.
k times sigma(n), k = 1..10:
A000203,
A074400, this sequence,
A239050,
A274535,
A274536,
A319527,
A319528,
A325299,
A326122.
-
[3*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
-
with(numtheory): seq(3*sigma(n), n=1..64);
-
Table[3 DivisorSigma[1, n], {n, 64}] (* Michael De Vlieger, Apr 19 2016 *)
-
a(n) = 3 * sigma(n);
A274536
a(n) = 6 * sigma(n).
Original entry on oeis.org
6, 18, 24, 42, 36, 72, 48, 90, 78, 108, 72, 168, 84, 144, 144, 186, 108, 234, 120, 252, 192, 216, 144, 360, 186, 252, 240, 336, 180, 432, 192, 378, 288, 324, 288, 546, 228, 360, 336, 540, 252, 576, 264, 504, 468, 432, 288, 744, 342, 558, 432, 588, 324, 720, 432, 720, 480, 540, 360, 1008, 372, 576, 624, 762
Offset: 1
-
with(numtheory): seq(6*sigma(n), n=1..64);
-
6DivisorSigma[1, Range[50]] (* Alonso del Arte, Jul 04 2016 *)
-
a(n) = 6 * sigma(n);
A319527
a(n) = 7 * sigma(n).
Original entry on oeis.org
7, 21, 28, 49, 42, 84, 56, 105, 91, 126, 84, 196, 98, 168, 168, 217, 126, 273, 140, 294, 224, 252, 168, 420, 217, 294, 280, 392, 210, 504, 224, 441, 336, 378, 336, 637, 266, 420, 392, 630, 294, 672, 308, 588, 546, 504, 336, 868, 399, 651, 504, 686, 378, 840, 504, 840, 560, 630, 420, 1176, 434, 672, 728, 889
Offset: 1
-
List([1..70],n->7*Sigma(n)); # Muniru A Asiru, Sep 28 2018
-
with(numtheory): seq(7*sigma(n), n=1..64);
-
7*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Mar 14 2020 *)
-
a(n) = 7 * sigma(n);
A340426
Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 3, 0, 4, 0, 1, 7, 0, 3, 1, 6, 0, 4, 3, 2, 12, 0, 7, 4, 6, 2, 8, 0, 6, 7, 8, 6, 4, 15, 0, 12, 6, 14, 8, 12, 4, 13, 0, 8, 12, 12, 14, 16, 12, 7, 18, 0, 15, 8, 24, 12, 28, 16, 21, 8, 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12, 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14, 14, 0, 12
Offset: 1
Triangle begins:
1;
3, 0;
4, 0, 1;
7, 0, 3, 1;
6, 0, 4, 3, 2;
12, 0, 7, 4, 6, 2;
8, 0, 6, 7, 8, 6, 4;
15, 0, 12, 6, 14, 8, 12, 4;
13, 0, 8, 12, 12, 14, 16, 12, 7;
18, 0, 15, 8, 24, 12, 28, 16, 21, 8;
12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12;
28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 12 = 12
2 0 * 6 = 0
3 1 * 7 = 7
4 1 * 4 = 4
5 2 * 3 = 6
6 2 * 1 = 2
. A000203
--------------------------
The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31.
A319073
Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1
The corner of the square array begins:
A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...
A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...
A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...
A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...
A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...
A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...
A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...
A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...
A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...
A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...
...
Row n lists the multiples of
A000203(n).
Initial zeros should be omitted in the following sequences related to the rows of the array:
(Note that in the OEIS there are many other sequences that are also rows of this square array.)
-
T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
-
with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
-
Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)
A340583
Triangle read by rows: T(n,k) = A002865(n-k)*A000203(k), 1 <= k <= n.
Original entry on oeis.org
1, 0, 3, 1, 0, 4, 1, 3, 0, 7, 2, 3, 4, 0, 6, 2, 6, 4, 7, 0, 12, 4, 6, 8, 7, 6, 0, 8, 4, 12, 8, 14, 6, 12, 0, 15, 7, 12, 16, 14, 12, 12, 8, 0, 13, 8, 21, 16, 28, 12, 24, 8, 15, 0, 18, 12, 24, 28, 28, 24, 24, 16, 15, 13, 0, 12, 14, 36, 32, 49, 24, 48, 16, 30, 13, 18, 0, 28
Offset: 1
Triangle begins:
1;
0, 3;
1, 0, 4;
1, 3, 0, 7;
2, 3, 4, 0, 6;
2, 6, 4, 7, 0, 12;
4, 6, 8, 7, 6, 0, 8;
4, 12, 8, 14, 6, 12, 0, 15;
7, 12, 16, 14, 12, 12, 8, 0, 13;
8, 21, 16, 28, 12, 24, 8, 15, 0, 18;
12, 24, 28, 28, 24, 24, 16, 15, 13, 0, 12;
14, 36, 32, 49, 24, 48, 16, 30, 13, 18, 0, 28;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A000203 T(6,k)
--------------------------
1 1 * 2 = 2
2 3 * 2 = 6
3 4 * 1 = 4
4 7 * 1 = 7
5 6 * 0 = 0
6 12 * 1 = 12
. A002865
--------------------------
The sum of row 6 is 2 + 6 + 4 + 7 + 0 + 12 = 31, equaling A138879(6).
-
A340583[n_, k_] := (PartitionsP[n - k] - PartitionsP[(n - k) - 1])*
DivisorSigma[1, k];
Table[A340583[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Robert P. P. McKone, Jan 25 2021 *)
A325299
a(n) = 9 * sigma(n).
Original entry on oeis.org
9, 27, 36, 63, 54, 108, 72, 135, 117, 162, 108, 252, 126, 216, 216, 279, 162, 351, 180, 378, 288, 324, 216, 540, 279, 378, 360, 504, 270, 648, 288, 567, 432, 486, 432, 819, 342, 540, 504, 810, 378, 864, 396, 756, 702, 648, 432, 1116, 513, 837, 648, 882, 486, 1080, 648, 1080, 720, 810, 540, 1512
Offset: 1
-
List([1..70],n->9*Sigma(n)); # After Muniru A Asiru
-
with(numtheory): seq(9*sigma(n), n=1..64);
-
9*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
-
a(n) = 9 * sigma(n);
A326122
a(n) = 10 * sigma(n).
Original entry on oeis.org
10, 30, 40, 70, 60, 120, 80, 150, 130, 180, 120, 280, 140, 240, 240, 310, 180, 390, 200, 420, 320, 360, 240, 600, 310, 420, 400, 560, 300, 720, 320, 630, 480, 540, 480, 910, 380, 600, 560, 900, 420, 960, 440, 840, 780, 720, 480, 1240, 570, 930, 720, 980, 540, 1200, 720, 1200, 800, 900, 600, 1680, 620, 960
Offset: 1
-
List([1..70],n->10*Sigma(n)); # After Muniru A Asiru
-
[10*DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Jul 26 2019
-
with(numtheory): seq(10*sigma(n), n=1..64);
-
10*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
-
a(n) = 10 * sigma(n);
Showing 1-9 of 9 results.
Comments