cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A239050 a(n) = 4*sigma(n).

Original entry on oeis.org

4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

4 times the sum of divisors of n.
a(n) is also the total number of horizontal cells in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every three-dimensional quadrant arises after the 90-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a square formed by four cells (see links and examples). - Omar E. Pol, Jul 04 2016

Examples

			For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
.
Illustration of initial terms:                                    _ _ _ _ _ _
.                                           _ _ _ _ _ _          |_|_|_|_|_|_|
.                           _ _ _ _       _|_|_|_|_|_|_|_     _ _|           |_ _
.             _ _ _ _     _|_|_|_|_|_    |_|_|       |_|_|   |_|               |_|
.     _ _    |_|_|_|_|   |_|       |_|   |_|           |_|   |_|               |_|
.    |_|_|   |_|   |_|   |_|       |_|   |_|           |_|   |_|               |_|
.    |_|_|   |_|_ _|_|   |_|       |_|   |_|           |_|   |_|               |_|
.            |_|_|_|_|   |_|_ _ _ _|_|   |_|_         _|_|   |_|               |_|
.                          |_|_|_|_|     |_|_|_ _ _ _|_|_|   |_|_             _|_|
.                                          |_|_|_|_|_|_|         |_ _ _ _ _ _|
.                                                                |_|_|_|_|_|_|
.
n:     1          2             3                4                     5
S(n):  1          3             4                7                     6
a(n):  4         12            16               28                    24
.
For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
		

Crossrefs

Alternating row sums of A239662.
Partial sums give A243980.
k times sigma(n), k=1..6: A000203, A074400, A272027, this sequence, A274535, A274536.
k times sigma(n), k = 1..10: A000203, A074400, A272027, this sequence, A274535, A274536, A319527, A319528, A325299, A326122.

Programs

  • Magma
    [4*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
  • Maple
    with(numtheory): seq(4*sigma(n), n=1..64); # Omar E. Pol, Jul 04 2016
  • Mathematica
    Array[4 DivisorSigma[1, #] &, 64] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    a(n) = 4 * sigma(n); \\ Omar E. Pol, Jul 04 2016
    

Formula

a(n) = 4*A000203(n) = 2*A074400(n).
a(n) = A000203(n) + A272027(n). - Omar E. Pol, Jul 04 2016
Dirichlet g.f.: 4*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
Conjecture: a(n) = sigma(3*n) = A144613(n) iff n is not a multiple of 3. - Omar E. Pol, Oct 02 2018
The conjecture above is correct. Write n = 3^e*m, gcd(3, m) = 1, then sigma(3*n) = sigma(3^(e+1))*sigma(m) = ((3^(e+2) - 1)/2)*sigma(m) = ((3^(e+2) - 1)/(3^(e+1) - 1))*sigma(3^e*m), and (3^(e+2) - 1)/(3^(e+1) - 1) = 4 if and only if e = 0. - Jianing Song, Feb 03 2019

A272027 a(n) = 3*sigma(n).

Original entry on oeis.org

3, 9, 12, 21, 18, 36, 24, 45, 39, 54, 36, 84, 42, 72, 72, 93, 54, 117, 60, 126, 96, 108, 72, 180, 93, 126, 120, 168, 90, 216, 96, 189, 144, 162, 144, 273, 114, 180, 168, 270, 126, 288, 132, 252, 234, 216, 144, 372, 171, 279, 216, 294, 162, 360, 216, 360, 240, 270, 180, 504, 186, 288, 312, 381
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2016

Keywords

Comments

3 times the sum of the divisors of n.
From Omar E. Pol, Jul 04 2016: (Start)
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every 120-degree three-dimensional sector arises after the 120-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a hexagon formed by three rhombuses (see Links section).
More generally, if k >= 3 then k*sigma(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid where the structure of every 360/k three-dimensional sector arises after the 360/k-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. If k >= 5 the top of the pyramid is a k-pointed star formed by k rhombuses. (End)

Crossrefs

Alternating row sums of triangle A272026.
k times sigma(n), k = 1..10: A000203, A074400, this sequence, A239050, A274535, A274536, A319527, A319528, A325299, A326122.

Programs

  • Magma
    [3*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
  • Maple
    with(numtheory): seq(3*sigma(n), n=1..64);
  • Mathematica
    Table[3 DivisorSigma[1, n], {n, 64}] (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    a(n) = 3 * sigma(n);
    

Formula

a(n) = 3*A000203(n) = A000203(n) + A074400(n) = A239050(n) - A000203(n).
Dirichlet g.f.: 3*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
a(n) = A274536(n)/2. - Antti Karttunen, Nov 16 2017
From Omar E. Pol, Oct 02 2018: (Start)
Conjecture 1: a(n) = sigma(2*n) = A062731(n) iff n is odd.
And more generally:
Conjecture 2: If p is prime then (p + 1)*sigma(n) = sigma(p*n) iff n is not a multiple of p. (End)
The above claims easily follow from the fact that sigma is multiplicative function, thus if p does not divide n, then sigma(p*n) = sigma(p)*sigma(n). - Antti Karttunen, Nov 21 2019

A326122 a(n) = 10 * sigma(n).

Original entry on oeis.org

10, 30, 40, 70, 60, 120, 80, 150, 130, 180, 120, 280, 140, 240, 240, 310, 180, 390, 200, 420, 320, 360, 240, 600, 310, 420, 400, 560, 300, 720, 320, 630, 480, 540, 480, 910, 380, 600, 560, 900, 420, 960, 440, 840, 780, 720, 480, 1240, 570, 930, 720, 980, 540, 1200, 720, 1200, 800, 900, 600, 1680, 620, 960
Offset: 1

Views

Author

Omar E. Pol, Jul 13 2019

Keywords

Comments

10 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every 36-degree-three-dimensional sector arises after the 36-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a 10-pointed star formed by 10 rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->10*Sigma(n)); # After Muniru A Asiru
    
  • Magma
    [10*DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Jul 26 2019
  • Maple
    with(numtheory): seq(10*sigma(n), n=1..64);
  • Mathematica
    10*DivisorSigma[1,Range[70]] (* After Harvey P. Dale *)
  • PARI
    a(n) = 10 * sigma(n);
    

Formula

a(n) = 10*A000203(n) = 5*A074400(n) = 2*A274535(n).
a(n) = A000203(n) + A325299(n) = A074400(n) + A319528(n).
Dirichlet g.f.: 10*zeta(s-1)*zeta(s). - (After Ilya Gutkovskiy)
Showing 1-3 of 3 results.