cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A365446 Partial sums of A224613.

Original entry on oeis.org

12, 40, 79, 139, 211, 302, 398, 522, 642, 810, 954, 1149, 1317, 1541, 1775, 2027, 2243, 2523, 2763, 3123, 3435, 3771, 4059, 4462, 4834, 5226, 5589, 6069, 6429, 6975, 7359, 7867, 8335, 8839, 9415, 10015, 10471, 11031, 11577, 12321, 12825, 13553, 14081, 14801, 15521, 16193, 16769, 17588, 18272, 19140, 19842
Offset: 1

Views

Author

Omar E. Pol, Sep 04 2023

Keywords

Comments

Partial sums of the sum of the divisors of the nonzero multiples of 6.
Consider a spiral similar to the spiral described in A239660 but instead of having four quadrants on the square grid the new spiral has six wedges on the triangular grid. A "diamond" formed by two adjacent triangles has area 1. a(n) is the total number of diamonds (or the total area) in the sixth wedge after n turns. Note that the six wedge spiral shows more and better geometric patterns than the four quadrants spiral. - Omar E. Pol, Apr 26 2025

Crossrefs

Sequences of the same family are A363161, A365442, A365444, A383405, this sequence.

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[1, 6*n], {n, 1, 50}]] (* Amiram Eldar, Sep 07 2023 *)
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A365446(n): return sum(prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(m))+Counter([2,3])).items()) for m in range(1,n+1)) # Chai Wah Wu, Sep 07 2023

Formula

a(n) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Sep 07 2023

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A062731 Sum of divisors of 2*n.

Original entry on oeis.org

3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, 42, 56, 72, 63, 54, 91, 60, 90, 96, 84, 72, 124, 93, 98, 120, 120, 90, 168, 96, 127, 144, 126, 144, 195, 114, 140, 168, 186, 126, 224, 132, 180, 234, 168, 144, 252, 171, 217, 216, 210, 162, 280, 216, 248, 240, 210
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021

Crossrefs

Sigma(k*n): A000203 (k=1), A144613 (k=3), A193553 (k=4, even bisection), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008438, A074400, A182818, A239052 (odd bisection), A326124 (partial sums), A054784, A215947, A336923, A346870, A346878, A346880, A355750.
Row 2 of A319526. Column & Row 2 of A216626. Row 1 of A355927.
Shallow diagonal (2n,n) of A265652. See also A244658.

Programs

Formula

a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
a(n) = A000203(n) + A054785(n). - R. J. Mathar, May 19 2020
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)

Extensions

Zero removed and offset corrected by Omar E. Pol, Jul 17 2009

A193553 Sum of divisors of 4*n.

Original entry on oeis.org

7, 15, 28, 31, 42, 60, 56, 63, 91, 90, 84, 124, 98, 120, 168, 127, 126, 195, 140, 186, 224, 180, 168, 252, 217, 210, 280, 248, 210, 360, 224, 255, 336, 270, 336, 403, 266, 300, 392, 378, 294, 480, 308, 372, 546, 360, 336, 508, 399, 465, 504, 434, 378, 600, 504, 504, 560, 450, 420, 744, 434, 480, 728, 511, 588, 720
Offset: 1

Views

Author

Joerg Arndt, Jul 30 2011

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), this sequence (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).

Programs

  • Mathematica
    DivisorSigma[1,4*Range[70]] (* Harvey P. Dale, Jan 27 2015 *)
  • PARI
    vector(66, n, sigma(4*n, 1))

Formula

a(n) = sigma(4*n) = A000203(4*n).
a(n) = 3*sigma(2*n) - 2*sigma(n); the relation is the special case e=1, p=2 of the relation sigma(t^2*n) = (t+1)*sigma(t*n) - t*sigma(n) where t=p^e (p a prime).
G.f. is x times the logarithmic derivative of the g.f. of A182820.
a(2*n-1) = 7 * A008438(n) = 7 * sigma(2*n-1); special case of sigma(2^k*(2*n-1)) = (2^(k+1)-1) * sigma(2*n-1).
Sum_{k=1..n} a(k) = (11*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 4))/(1 - x^(k/gcd(k, 4))). - Miles Wilson, Sep 29 2024

A144613 a(n) = sigma(3*n) = A000203(3*n).

Original entry on oeis.org

4, 12, 13, 28, 24, 39, 32, 60, 40, 72, 48, 91, 56, 96, 78, 124, 72, 120, 80, 168, 104, 144, 96, 195, 124, 168, 121, 224, 120, 234, 128, 252, 156, 216, 192, 280, 152, 240, 182, 360, 168, 312, 176, 336, 240, 288, 192, 403, 228, 372, 234, 392, 216, 363, 288, 480, 260, 360
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2009

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), this sequence (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 3*n]; Array[a, 60] (* Amiram Eldar, Dec 16 2022 *)
  • PARI
    vector(66, n, sigma(3*n, 1)) \\ Joerg Arndt, Jul 30 2011

Formula

a(n) = A000203(n) + 3*A078708(n). - R. J. Mathar, May 19 2020
Sum_{k=1..n} a(k) = (11*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Zero removed and offset corrected by Seiichi Manyama, Feb 28 2017

A283078 a(n) = sigma(7*n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 57, 120, 104, 144, 96, 224, 112, 171, 192, 248, 144, 312, 160, 336, 228, 288, 192, 480, 248, 336, 320, 399, 240, 576, 256, 504, 384, 432, 342, 728, 304, 480, 448, 720, 336, 684, 352, 672, 624, 576, 384, 992, 400, 744, 576, 784, 432, 960
Offset: 1

Views

Author

Seiichi Manyama, Feb 28 2017

Keywords

Examples

			For n = 3, the divisors of 3*7 are {1, 3, 7, 21}. Now, 1 + 3 + 7 + 21 = 32. So, a(3) = 32. - _Indranil Ghosh_, Feb 28 2017
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), this sequence (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008589.

Programs

Formula

From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(7*n) = A000203(A008589(n)).
Sum_{k=1..n} a(k) = (55*Pi^2/84) * n^2 + O(n*log(n)). (End)

A283122 a(n) = sigma(8*n).

Original entry on oeis.org

15, 31, 60, 63, 90, 124, 120, 127, 195, 186, 180, 252, 210, 248, 360, 255, 270, 403, 300, 378, 480, 372, 360, 508, 465, 434, 600, 504, 450, 744, 480, 511, 720, 558, 720, 819, 570, 620, 840, 762, 630, 992, 660, 756, 1170, 744, 720, 1020, 855, 961
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), this sequence (k=8), A283123 (k=9).
Cf. A008590.

Programs

Formula

a(n) = A000203(8*n).
Sum_{k=1..n} a(k) = (23*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A283123 a(n) = sigma(9*n).

Original entry on oeis.org

13, 39, 40, 91, 78, 120, 104, 195, 121, 234, 156, 280, 182, 312, 240, 403, 234, 363, 260, 546, 320, 468, 312, 600, 403, 546, 364, 728, 390, 720, 416, 819, 480, 702, 624, 847, 494, 780, 560, 1170, 546, 960, 572, 1092, 726, 936, 624, 1240, 741, 1209
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Comments

In general, for k>=1, Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k). - Vaclav Kotesovec, May 11 2024

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), this sequence (k=9).
Cf. A008591.

Programs

Formula

a(n) = A000203(9*n).
Sum_{k=1..n} a(k) = (35*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A346875 Irregular triangle read by rows in which row n lists the row A000384(n) of A237591, n >= 1.

Original entry on oeis.org

1, 4, 1, 1, 8, 3, 2, 1, 1, 15, 5, 3, 2, 1, 1, 1, 23, 8, 5, 2, 2, 2, 1, 1, 1, 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1, 46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1, 61, 20, 11, 6, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 77, 26, 14, 8, 5, 5, 3, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 96, 32, 16
Offset: 1

Views

Author

Omar E. Pol, Aug 06 2021

Keywords

Comments

The characteristic shape of the symmetric representation of sigma(A000384(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a valley and the largest Dyck path has a peak.
So knowing this we can know if a number is a hexagonal number (or not) just by looking at the diagram, even ignoring the concept of hexagonal number.
Therefore we can see a geometric pattern of the distribution of the hexagonal numbers in the stepped pyramid described in A245092.
T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A000384(n-1)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000384(n-1).
T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th hexagonal number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th hexagonal number into exactly k + 1 consecutive parts.

Examples

			Triangle begins:
   1;
   4,  1,  1;
   8,  3,  2,  1, 1;
  15,  5,  3,  2, 1, 1, 1;
  23,  8,  5,  2, 2, 2, 1, 1, 1;
  34, 11,  6,  4, 3, 2, 2, 1, 1, 1, 1;
  46, 16,  8,  5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
  61, 20, 11,  6, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1;
  77, 26, 14,  8, 5, 5, 3, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1;
  96, 32, 16, 10, 7, 5, 4, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1;
...
Illustration of initial terms:
Column H gives the nonzero hexagonal numbers (A000384).
Column S gives the sum of the divisors of the hexagonal numbers which equals the area (and the number of cells) of the associated diagram.
-------------------------------------------------------------------------
  n    H    S   Diagram
-------------------------------------------------------------------------
                 _         _                 _                         _
  1    1    1   |_|       | |               | |                       | |
                 1        | |               | |                       | |
                       _ _| |               | |                       | |
                      |    _|               | |                       | |
                 _ _ _|  _|                 | |                       | |
  2    6   12   |_ _ _ _| 1                 | |                       | |
                    4    1                  | |                       | |
                                       _ _ _|_|                       | |
                                   _ _| |                             | |
                                  |    _|                             | |
                                 _|  _|                               | |
                                |_ _|1 1                              | |
                                | 2                                   | |
                 _ _ _ _ _ _ _ _|4                           _ _ _ _ _| |
  3   15   24   |_ _ _ _ _ _ _ _|                           |  _ _ _ _ _|
                        8                                   | |
                                                         _ _| |
                                                     _ _|  _ _|
                                                    |    _|
                                                   _|  _|
                                                  |  _|1 1
                                             _ _ _| | 1
                                            |  _ _ _|2
                                            | |  3
                                            | |
                                            | |5
                 _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4   28   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
                              15
.
		

Crossrefs

Row sums give A000384, n >= 1.
Row lengths give A005408.
Column 1 is A267682, n >= 1.
For the characteristic shape of sigma(A000040(n)) see A346871.
For the characteristic shape of sigma(A000079(n)) see A346872.
For the characteristic shape of sigma(A000217(n)) see A346873.
For the visualization of Mersenne numbers A000225 see A346874.
For the characteristic shape of sigma(A000396(n)) see A346876.
For the characteristic shape of sigma(A008588(n)) see A224613.
Showing 1-10 of 35 results. Next