cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A062731 Sum of divisors of 2*n.

Original entry on oeis.org

3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, 42, 56, 72, 63, 54, 91, 60, 90, 96, 84, 72, 124, 93, 98, 120, 120, 90, 168, 96, 127, 144, 126, 144, 195, 114, 140, 168, 186, 126, 224, 132, 180, 234, 168, 144, 252, 171, 217, 216, 210, 162, 280, 216, 248, 240, 210
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021

Crossrefs

Sigma(k*n): A000203 (k=1), A144613 (k=3), A193553 (k=4, even bisection), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008438, A074400, A182818, A239052 (odd bisection), A326124 (partial sums), A054784, A215947, A336923, A346870, A346878, A346880, A355750.
Row 2 of A319526. Column & Row 2 of A216626. Row 1 of A355927.
Shallow diagonal (2n,n) of A265652. See also A244658.

Programs

Formula

a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
a(n) = A000203(n) + A054785(n). - R. J. Mathar, May 19 2020
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)

Extensions

Zero removed and offset corrected by Omar E. Pol, Jul 17 2009

A224613 a(n) = sigma(6*n).

Original entry on oeis.org

12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648
Offset: 1

Views

Author

Zak Seidov, Apr 22 2013

Keywords

Comments

Conjectures: sigma(6n) > sigma(6n - 1) and sigma(6n) > sigma(6n + 1).
Conjectures are false. Try prime 73961483429 for n. One finds sigma(6*73961483429) < sigma(6*73961483429+1). The number n = 105851369791 provides a counterexample for the other case. - T. D. Noe, Apr 22 2013
Sum of the divisors of the numbers k which have the property that the width associated to the vertex of the first (also the last) valley of the smallest Dyck path of the symmetric representation of sigma(k) is equal to 2 (see example). Other positive integers have width 0 or 1 associated to the mentioned valley. - Omar E. Pol, Aug 11 2021

Examples

			From _Omar E. Pol_, Aug 11 2021: (Start)
Illustration of initial terms:
----------------------------------------------------------------------
   n    6*n   a(n)    Diagram:  1           2           3           4
----------------------------------------------------------------------
                                _           _           _           _
                               | |         | |         | |         | |
                               | |         | |         | |         | |
                          * _ _| |         | |         | |         | |
                           |  _ _|         | |         | |         | |
                      _ _ _| |_|           | |         | |         | |
   1     6     12    |_ _ _ _|      * _ _ _| |         | |         | |
                                    _|  _ _ _|         | |         | |
                                * _|  _| |             | |         | |
                                 |  _|  _|    * _ _ _ _| |         | |
                                 | |_ _|       |  _ _ _ _|         | |
                      _ _ _ _ _ _| |          _| | |               | |
   2    12     28    |_ _ _ _ _ _ _|        _|  _|_|    * _ _ _ _ _| |
                                      * _ _|  _|         |  _ _ _ _ _|
                                       |  _ _|        _ _| | |
                                       | |_ _|      _|  _ _| |
                                       | |        _|  _|  _ _|
                      _ _ _ _ _ _ _ _ _| |       |  _|  _|
   3    18     39    |_ _ _ _ _ _ _ _ _ _|  * _ _| |  _|
                                             |  _ _| |
                                             | |_ _ _|
                                             | |
                                             | |
                      _ _ _ _ _ _ _ _ _ _ _ _| |
   4    24     60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3).
a(n) equals the area (also the number of cells) in the n-th diagram. (End)
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), this sequence (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A000203 (sigma(n)), A053224 (n: sigma(n) < sigma(n+1)).
Cf. A067825 (even n: sigma(n)< sigma(n+1)).

Programs

  • Mathematica
    DivisorSigma[1,6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)
  • PARI
    a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013
    
  • Python
    from sympy import divisor_sigma
    def a(n):  return divisor_sigma(6*n)
    print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A224613(n): return prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(n))+Counter([2,3])).items()) # Chai Wah Wu, Sep 07 2023

Formula

a(n) = A000203(6n).
a(n) = A000203(A008588(n)). - Omar E. Pol, Aug 11 2021
Sum_{k=1..n} a(k) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Corrected by Harvey P. Dale, Apr 16 2016

A193553 Sum of divisors of 4*n.

Original entry on oeis.org

7, 15, 28, 31, 42, 60, 56, 63, 91, 90, 84, 124, 98, 120, 168, 127, 126, 195, 140, 186, 224, 180, 168, 252, 217, 210, 280, 248, 210, 360, 224, 255, 336, 270, 336, 403, 266, 300, 392, 378, 294, 480, 308, 372, 546, 360, 336, 508, 399, 465, 504, 434, 378, 600, 504, 504, 560, 450, 420, 744, 434, 480, 728, 511, 588, 720
Offset: 1

Views

Author

Joerg Arndt, Jul 30 2011

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), this sequence (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).

Programs

  • Mathematica
    DivisorSigma[1,4*Range[70]] (* Harvey P. Dale, Jan 27 2015 *)
  • PARI
    vector(66, n, sigma(4*n, 1))

Formula

a(n) = sigma(4*n) = A000203(4*n).
a(n) = 3*sigma(2*n) - 2*sigma(n); the relation is the special case e=1, p=2 of the relation sigma(t^2*n) = (t+1)*sigma(t*n) - t*sigma(n) where t=p^e (p a prime).
G.f. is x times the logarithmic derivative of the g.f. of A182820.
a(2*n-1) = 7 * A008438(n) = 7 * sigma(2*n-1); special case of sigma(2^k*(2*n-1)) = (2^(k+1)-1) * sigma(2*n-1).
Sum_{k=1..n} a(k) = (11*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 4))/(1 - x^(k/gcd(k, 4))). - Miles Wilson, Sep 29 2024

A144613 a(n) = sigma(3*n) = A000203(3*n).

Original entry on oeis.org

4, 12, 13, 28, 24, 39, 32, 60, 40, 72, 48, 91, 56, 96, 78, 124, 72, 120, 80, 168, 104, 144, 96, 195, 124, 168, 121, 224, 120, 234, 128, 252, 156, 216, 192, 280, 152, 240, 182, 360, 168, 312, 176, 336, 240, 288, 192, 403, 228, 372, 234, 392, 216, 363, 288, 480, 260, 360
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2009

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), this sequence (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 3*n]; Array[a, 60] (* Amiram Eldar, Dec 16 2022 *)
  • PARI
    vector(66, n, sigma(3*n, 1)) \\ Joerg Arndt, Jul 30 2011

Formula

a(n) = A000203(n) + 3*A078708(n). - R. J. Mathar, May 19 2020
Sum_{k=1..n} a(k) = (11*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Zero removed and offset corrected by Seiichi Manyama, Feb 28 2017

A283122 a(n) = sigma(8*n).

Original entry on oeis.org

15, 31, 60, 63, 90, 124, 120, 127, 195, 186, 180, 252, 210, 248, 360, 255, 270, 403, 300, 378, 480, 372, 360, 508, 465, 434, 600, 504, 450, 744, 480, 511, 720, 558, 720, 819, 570, 620, 840, 762, 630, 992, 660, 756, 1170, 744, 720, 1020, 855, 961
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), this sequence (k=8), A283123 (k=9).
Cf. A008590.

Programs

Formula

a(n) = A000203(8*n).
Sum_{k=1..n} a(k) = (23*Pi^2/24) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A283123 a(n) = sigma(9*n).

Original entry on oeis.org

13, 39, 40, 91, 78, 120, 104, 195, 121, 234, 156, 280, 182, 312, 240, 403, 234, 363, 260, 546, 320, 468, 312, 600, 403, 546, 364, 728, 390, 720, 416, 819, 480, 702, 624, 847, 494, 780, 560, 1170, 546, 960, 572, 1092, 726, 936, 624, 1240, 741, 1209
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Comments

In general, for k>=1, Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k). - Vaclav Kotesovec, May 11 2024

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), this sequence (k=9).
Cf. A008591.

Programs

Formula

a(n) = A000203(9*n).
Sum_{k=1..n} a(k) = (35*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A283118 a(n) = sigma(5*n).

Original entry on oeis.org

6, 18, 24, 42, 31, 72, 48, 90, 78, 93, 72, 168, 84, 144, 124, 186, 108, 234, 120, 217, 192, 216, 144, 360, 156, 252, 240, 336, 180, 372, 192, 378, 288, 324, 248, 546, 228, 360, 336, 465, 252, 576, 264, 504, 403, 432, 288, 744, 342, 468, 432, 588, 324, 720
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), this sequence (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008587.

Programs

Formula

a(n) = A000203(5*n).
Sum_{k=1..n} a(k) = (29*Pi^2/60) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A319528 a(n) = 8 * sigma(n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Comments

8 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every 45-degree three-dimensional sector arises after the 45-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is an eight-pointed star formed by eight rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
  • Maple
    with(numtheory): seq(8*sigma(n), n=1..64);
  • Mathematica
    8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
  • PARI
    a(n) = 8 * sigma(n);
    

Formula

a(n) = 8*A000203(n) = 4*A074400(n) = 2*A239050(n).
a(n) = A000203(n) + A319527(n).
Dirichlet g.f.: 8*zeta(s-1)*zeta(s). (After Ilya Gutkovskiy)
Conjecture: a(n) = sigma(7*n) = A283078(n) iff n is not a multiple of 7.
Conjecture is true, since sigma is multiplicative, so if (7,n) = 1 then sigma(7*n) = sigma(7)*sigma(n) = 8*sigma(n). - Charlie Neder, Oct 02 2018

A372787 a(n) = tau(7*n) = A000005(7*n).

Original entry on oeis.org

2, 4, 4, 6, 4, 8, 3, 8, 6, 8, 4, 12, 4, 6, 8, 10, 4, 12, 4, 12, 6, 8, 4, 16, 6, 8, 8, 9, 4, 16, 4, 12, 8, 8, 6, 18, 4, 8, 8, 16, 4, 12, 4, 12, 12, 8, 4, 20, 4, 12, 8, 12, 4, 16, 8, 12, 8, 8, 4, 24, 4, 8, 9, 14, 8, 16, 4, 12, 8, 12, 4, 24, 4, 8, 12, 12, 6, 16, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 7*n], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ (13*n*(log(n) + 2*gamma - 1) + n*log(7)) / 7, where gamma is the Euler-Mascheroni constant A001620.

A088842 Denominator of the quotient sigma(7n)/sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 8
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Comments

Sum of powers of 7 dividing n. - Amiram Eldar, Nov 27 2022

Crossrefs

Cf. A000203 (sigma), A001620, A088841 (numerators), A283078 (sigma(7n)).

Programs

  • Mathematica
    Table[Denominator[DivisorSigma[1, 7*n]/DivisorSigma[1, n]], {n, 1, 128}] (* corrected by Ilya Gutkovskiy, Dec 15 2020 *)
    a[n_] := (7^(IntegerExponent[n, 7] + 1) - 1)/6; Array[a, 100] (* Amiram Eldar, Nov 27 2022 *)
  • PARI
    a(n) = denominator(sigma(7*n)/sigma(n)); \\ Michel Marcus, Dec 15 2020
    
  • PARI
    a(n) = (7^(valuation(n, 7) + 1) - 1)/6; \\ Amiram Eldar, Nov 27 2022

Formula

G.f.: Sum_{k>=0} 7^k * x^(7^k) / (1 - x^(7^k)). - Ilya Gutkovskiy, Dec 15 2020
From Amiram Eldar, Nov 27 2022: (Start)
Multiplicative with a(7^e) = (7^(e+1)-1)/6, and a(p^e) = 1 for p != 7.
Dirichlet g.f.: zeta(s) / (1 - 7^(1 - s)).
Sum_{k=1..n} a(k) ~ n*log_7(n) + (1/2 + (gamma - 1)/log(7))*n, where gamma is Euler's constant (A001620). (End)
Showing 1-10 of 14 results. Next