cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A015128 Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 344, 504, 728, 1040, 1472, 2062, 2864, 3948, 5400, 7336, 9904, 13288, 17728, 23528, 31066, 40824, 53408, 69568, 90248, 116624, 150144, 192612, 246256, 313808, 398640, 504886, 637592, 802936, 1008448
Offset: 0

Views

Author

Keywords

Comments

The over-partition function.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of jagged partitions of n.
According to Ramanujan (1913) a(n) is close to (cosh(x)-sinh(x)/x)/(4*n) where x=Pi*sqrt(n). - Michael Somos, Mar 17 2003
Number of partitions of 2n with all odd parts occurring with even multiplicities. There is no restriction on the even parts. Cf. A006950, A046682. - Mamuka Jibladze, Sep 05 2003
Number of partitions of n where there are two kinds of odd parts. - Joerg Arndt, Jul 30 2011. Or, in Gosper's words, partitions into red integers and blue odd integers. - N. J. A. Sloane, Jul 04 2016.
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras sp(n), n=0,1,2,3,... (the case n=0 being degenerate). A006950, this sequence and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Also, number of 01-partitions of n. A 01-partition of n is a weakly decreasing sequence of m nonnegative integers n(i) such that sum(n(i))=n, n(m)>0, n(j)>=n(j+1)-1 and n(j)>=n(j+2). They are special cases of jagged partitions.
a(8n+7) is divisible by 64 (from Fortin/Jacob/Mathieu paper).
Smallest sequence of even numbers (except a(0)) which is the Euler transform of a sequence of positive integers. - Franklin T. Adams-Watters, Oct 16 2006
Convolution of A000041 and A000009. - Vladeta Jovovic, Nov 26 2002
Equals A022567 convolved with A035363. - Gary W. Adamson, Jun 09 2009
Equals the infinite product [1,2,2,2,...] * [1,0,2,0,2,0,2,...] * [1,0,0,2,0,0,2,0,0,2,...] * ... . - Gary W. Adamson, Jul 05 2009
Equals A182818 convolved with A010815. - Gary W. Adamson, Jul 20 2012
Partial sums of A211971. - Omar E. Pol, Jan 09 2014
Also 1 together with the row sums of A235790. - Omar E. Pol, Jan 19 2014
Antidiagonal sums of A284592. - Peter Bala, Mar 30 2017
The overlining method is equivalent to enumerating the k-subsets of the distinct parts of the i-th partition. - Richard Joseph Boland, Sep 02 2021

Examples

			G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 24*q^5 + 40*q^6 + 64*q^7 + 100*q^8 + ...
For n = 4 the 14 overpartitions of 4 are [4], [4'], [2, 2], [2', 2], [3, 1], [3', 1], [3, 1'], [3', 1'], [2, 1, 1], [2', 1, 1], [2, 1', 1], [2', 1', 1], [1, 1, 1, 1], [1', 1, 1, 1]. - _Omar E. Pol_, Jan 19 2014
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 103.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. See the function g(q).
  • James R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372.

Crossrefs

See A004402 for a version with signs.
Column k=2 of A321884.
Cf. A002513.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A015128List(len) = JacobiTheta4(len, -1)
    A015128List(40) |> println # Peter Luschny, Mar 12 2018
    
  • Maple
    mul((1+x^n)/(1-x^n),n=1..256): seq(coeff(series(%,x,n+1),x,n), n=0..40);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +2*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2014
    a_list := proc(len) series(1/JacobiTheta4(0,x),x,len+1); seq(coeff(%,x,j),j=0..len) end: a_list(39); # Peter Luschny, Mar 14 2017
  • Mathematica
    max = 39; f[x_] := Exp[Sum[(DivisorSigma[1, 2*n] - DivisorSigma[1, n])*(x^n/n), {n, 1, max}]]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Jun 11 2012, after Joerg Arndt *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
    QP = QPochhammer; s = QP[q^2]/QP[q]^2 + O[q]^40; CoefficientList[s + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015, after Michael Somos *)
    Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Nov 28 2015 *)
    (QPochhammer[-x, x]/QPochhammer[x, x] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 12 2016 *)
    nmax = 100; p = ConstantArray[0, nmax+1]; p[[1]] = 1; Do[p[[n+1]] = 0; k = 1; While[n + 1 - k^2 > 0, p[[n+1]] += (-1)^(k+1)*p[[n + 1 - k^2]]; k++;]; p[[n+1]] = 2*p[[n+1]];, {n, 1, nmax}]; p (* Vaclav Kotesovec, Apr 11 2017 *)
    a[ n_] := SeriesCoefficient[ 1 / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 15 2018 *)
    a[n_] := Sum[2^Length[Union[IntegerPartitions[n][[i]]]], {i, 1, PartitionsP[n]}]; (* Richard Joseph Boland, Sep 02 2021 *)
    n = 39; CoefficientList[Product[(1 + x^k)/(1 - x^k), {k, 1, n}] + O[x]^(n + 1), x] (* Oliver Seipel, Sep 19 2021 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 01 2008 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n\2+1,2*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))/(2*m-1))),n)} /* Paul D. Hanna, Aug 06 2009 */
    
  • PARI
    N=66; x='x+O('x^N); gf=exp(sum(n=1,N,(sigma(2*n)-sigma(n))*x^n/n));Vec(gf) /* Joerg Arndt, Jul 30 2011 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)/eta(q)^2)} \\ Altug Alkan, Mar 20 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1, 1, 2)
    b = EulerTransform(a)
    print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020

Formula

Euler transform of period 2 sequence [2, 1, ...]. - Michael Somos, Mar 17 2003
G.f.: Product_{m>=1} (1 + q^m)/(1 - q^m).
G.f.: 1 / (Sum_{m=-inf..inf} (-q)^(m^2)) = 1/theta_4(q).
G.f.: 1 / Product_{m>=1} (1 - q^(2*m)) * (1 - q^(2*m-1))^2.
G.f.: exp( Sum_{n>=1} 2*x^(2*n-1)/(1 - x^(2*n-1))/(2*n-1) ). - Paul D. Hanna, Aug 06 2009
G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ). - Joerg Arndt, Jul 30 2011
G.f.: Product_{n>=0} theta_3(q^(2^n))^(2^n). - Joerg Arndt, Aug 03 2011
A004402(n) = (-1)^n * a(n). - Michael Somos, Mar 17 2003
Expansion of eta(q^2) / eta(q)^2 in powers of q. - Michael Somos, Nov 01 2008
Expansion of 1 / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2008
Convolution inverse of A002448. - Michael Somos, Nov 01 2008
Recurrence: a(n) = 2*Sum_{m>=1} (-1)^(m+1) * a(n-m^2).
a(n) = (1/n)*Sum_{k=1..n} (sigma(2*k) - sigma(k))*a(n-k). - Vladeta Jovovic, Dec 05 2004
G.f.: Product_{i>=1} (1 + x^i)^A001511(2i) (see A000041). - Jon Perry, Jun 06 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w^4 * (u^4 + v^4) - 2 * u^2 * v^6. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6^3 * (u1^2 + u3^2) - 2 * u1 * u2 * u3^3. - Michael Somos, Nov 01 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2^3 * (u3^2 - 3 * u1^2) + 2 * u1^3 * u3 * u6. - Michael Somos, Nov 01 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 32^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106507. - Michael Somos, Nov 01 2008
a(n) = 2*A014968(n), n >= 1. - Omar E. Pol, Jan 19 2014
a(n) ~ Pi * BesselI(3/2, Pi*sqrt(n)) / (4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Jan 11 2017
Let T(n,k) = the number of partitions of n with parts 1 through k of two kinds, T(n,0) = A000041(n), the number of partitions of n. Then a(n) = T(n,0) + T(n-1,1) + T(n-3,2) + T(n-6,3) + T(n-10,4) + T(n-15,5) + ... . Gregory L. Simay, May 29 2019
For n >= 1, a(n) = Sum_{k>=1} 2^k * A116608(n,k). - Gregory L. Simay, Jun 01 2019
Sum_{n>=1} 1/a(n) = A303662. - Amiram Eldar, Nov 15 2020
a(n) = Sum_{i=1..p(n)} 2^(d(n,i)), where d(n,i) is the number of distinct parts in the i-th partition of n. - Richard Joseph Boland, Sep 02 2021
G.f.: A(x) = exp( Sum_{n >= 1} x^n*(2 + x^n)/(n*(1 - x^(2*n))) ). - Peter Bala, Dec 23 2021
G.f. A(q) satisfies (3*A(q)/A(q^9) - 1)^3 = 9*A(q)^4/A(q^3)^4 - 1. - Paul D. Hanna, Oct 14 2024

Extensions

Minor edits by Vaclav Kotesovec, Sep 13 2014

A062731 Sum of divisors of 2*n.

Original entry on oeis.org

3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, 42, 56, 72, 63, 54, 91, 60, 90, 96, 84, 72, 124, 93, 98, 120, 120, 90, 168, 96, 127, 144, 126, 144, 195, 114, 140, 168, 186, 126, 224, 132, 180, 234, 168, 144, 252, 171, 217, 216, 210, 162, 280, 216, 248, 240, 210
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

a(n) is also the total number of parts in all partitions of 2*n into equal parts. - Omar E. Pol, Feb 14 2021

Crossrefs

Sigma(k*n): A000203 (k=1), A144613 (k=3), A193553 (k=4, even bisection), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008438, A074400, A182818, A239052 (odd bisection), A326124 (partial sums), A054784, A215947, A336923, A346870, A346878, A346880, A355750.
Row 2 of A319526. Column & Row 2 of A216626. Row 1 of A355927.
Shallow diagonal (2n,n) of A265652. See also A244658.

Programs

Formula

a(n) = A000203(2*n). - R. J. Mathar, Apr 06 2011
a(n) = A000203(n) + A054785(n). - R. J. Mathar, May 19 2020
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * (3 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. (End)
From Miles Wilson, Sep 30 2024: (Start)
G.f.: Sum_{k>=1} k*x^(k/gcd(k, 2))/(1 - x^(k/gcd(k, 2))).
G.f.: Sum_{k>=1} k*x^(2*k/(3 + (-1)^k))/(1 - x^(2*k/(3 + (-1)^k))). (End)

Extensions

Zero removed and offset corrected by Omar E. Pol, Jul 17 2009

A182819 G.f.: exp( Sum_{n>=1} sigma(3n)*x^n/n ).

Original entry on oeis.org

1, 4, 14, 39, 101, 238, 533, 1131, 2314, 4566, 8763, 16376, 29939, 53612, 94302, 163112, 277953, 467064, 774943, 1270528, 2060331, 3306771, 5256579, 8280649, 12934125, 20040761, 30817437, 47048638, 71339593, 107469716, 160898163
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(3n) = A000203(3n), the sum of divisors of 3n (A144613).
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).
In general, if r>0 and g.f. = Product_{k>=1} (1 - x^(r*k))/(1 - x^k)^(r+1) then a(n) ~ (r+1-1/r)^((r+1)/4) * exp(Pi*sqrt(2*(r+1-1/r)*n/3)) / (sqrt(r) * 2^((3*r+5)/4) * 3^((r+1)/4) * n^((r+3)/4)). - Vaclav Kotesovec, Nov 28 2016

Examples

			G.f.: A(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 +...
log(A(x)) = 4*x + 12*x^2/2 + 13*x^3/3 + 28*x^4/4 + 24*x^5/5 + 39*x^6/6 + 32*x^7/7 + 60*x^8/8 +...+ sigma(3n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    w := exp(2*Pi*sqrt(-1)*(1/3)):
    with(combinat):
    seq(simplify(add(add(w^(j+2*k)*numbpart(j)*numbpart(k)*numbpart(3*n-j-k), k = 0..3*n-j), j = 0..3*n)), n = 0..30);
    # Peter Bala, Jan 24 2017
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(3*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    default(seriesprecision,66); Vec(eta(x^3)/eta(x)^4)\\ Joerg Arndt, Dec 06 2010

Formula

Generating function A(x) = E(x^3)/E(x)^4 where E(x) = Product_{n>=1} (1-x^n). [Joerg Arndt, Dec 05 2010]
a(n) ~ 11*exp(sqrt(22*n)*Pi/3) / (72*sqrt(6)*n^(3/2)). - Vaclav Kotesovec, Nov 26 2016
From Peter Bala, Jan 24 2016: (Start)
A(x^3) = P(x)*P(w*x)*P(w^2*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n), and where w = exp(2*Pi*i/3) is a primitive cube root of unity.
a(n) = Sum_{j = 0..3*n} ( Sum_{k = 0..3*n-j} w^(j+2*k)*p(k)*p(j) *p(3*n-j-k) ). (End)

A182821 Expansion of g.f.: exp( Sum_{n>=1} sigma(5*n)*x^n/n ).

Original entry on oeis.org

1, 6, 27, 98, 315, 917, 2486, 6345, 15427, 35965, 80897, 176296, 373652, 772381, 1561130, 3091476, 6008896, 11480887, 21591830, 40016045, 73157052, 132052382, 235535752, 415433365, 725043875, 1252857043, 2144601961, 3638413830
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(5*n) = A000203(5*n), the sum of divisors of 5n.
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + ...
log(A(x)) = 6*x + 18*x^2/2 + 24*x^3/3 + 42*x^4/4 + 31*x^5/5 + 72*x^6/6 + 48*x^7/7 + 90*x^8/8 + ... + sigma(5n)*x^n/n + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^k: A035959 (k=1), A160461 (k=2), A277212 (k=5),
this sequence (k=6).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(5*j))/(1 - x^j)^6: j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(5*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    default(seriesprecision,66); Vec(eta(x^5)/eta(x)^6) \\ Joerg Arndt, Dec 05 2010
    
  • PARI
    m=30; x='x+O('x^m); Vec(prod(j=1,m+2, (1 - x^(5*j))/(1 - x^j)^6)) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(30)
    s = prod((1 - x^(5*j))/(1 - x^j)^6 for j in (1..32))
    list(s) # G. C. Greubel, Nov 18 2018

Formula

G.f.: A(x) = E(x^5)/E(x)^6 where E(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Dec 05 2010
a(n) ~ 29^(3/2) * exp(sqrt(58*n/15)*Pi) / (2400*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 28 2016
A(x^5) = P(x)*P(a*x)*P(a^2*x)*P(a^3*x)*P(a^4*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n), and where a = exp(2*Pi*i/5) is a primitive fifth root of unity. - Peter Bala, Jan 24 2017

A182820 G.f.: exp( Sum_{n>=1} sigma(4n)*x^n/n ).

Original entry on oeis.org

1, 7, 32, 119, 385, 1127, 3057, 7799, 18914, 43950, 98434, 213486, 450051, 925013, 1858355, 3657052, 7062245, 13404195, 25038741, 46086250, 83669927, 149970936, 265608168, 465149039, 806022315, 1382822644, 2350101516, 3958427938
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(4n) = A000203(4n), the sum of divisors of 4n.
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 +...
log(A(x)) = 7*x + 15*x^2/2 + 28*x^3/3 + 31*x^4/4 + 42*x^5/5 + 60*x^6/6 + 56*x^7/7 + 63*x^8/8 +...+ sigma(4n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b := n -> add((-1)^k*numbpart(k)*numbpart(n-k), k = 0..n):
    seq( add(I^k*b(k)*b(4*n-k), k = 0..4*n), n = 0..30 );
    # - Peter Bala, Jan 24 2017
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k)^3/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(4*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    x='x+O('x^66); Vec(eta(x^2)^3/eta(x)^7) \\ Joerg Arndt, Dec 05 2010

Formula

Generating function A(x) = E(x^2)^3/E(x)^7 where E(x) = Product_{n>=1} (1-x^n). [Joerg Arndt, Dec 05 2010]
a(n) ~ 11^(5/4) * exp(sqrt(11*n/3)*Pi) / (128 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Nov 28 2016
From Peter Bala, Jan 24 2016: (Start)
A(x^4) = P(x)*P(-x)*P(i*x)*P(-i*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n).
a(n) = Sum_{k = 0..4*n} i^k*b(k)*b(4*n-k), where b(n) := Sum_{k = 0..n} (-1)^k*p(k)*p(n-k). (End)

A283119 Expansion of exp( Sum_{n>=1} sigma(6*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 12, 86, 469, 2141, 8594, 31247, 104945, 330094, 982284, 2786861, 7584060, 19893185, 50494558, 124437410, 298555264, 699017259, 1600364304, 3589048673, 7896510620, 17067607791, 36283650153, 75947406513, 156672628539, 318804641925, 640390347979
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Comments

sigma(6*n) = A000203(6*n), the sum of divisors of 6*n (A224613).

Examples

			G.f.: A(x) = 1 + 12*x + 86*x^2 + 469*x^3 + 2141*x^4 + 8594*x^5 + ...
log(A(x)) = 12*x + 28*x^2/2 + 39*x^3/3 + 60*x^4/4 + 72*x^5/5 + 91*x^6/6 + 96*x^7/7 + 124*x^8/8 + ... + sigma(6*n)*x^n/n + ...
		

Crossrefs

Cf. A224613 (sigma(6*n)), A283164 (exp( Sum_{n>=1} -sigma(6*n)*x^n/n )).
Cf. A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), this sequence (k=6), A283077 (k=7), A283120 (k=8), A283121 (k=9).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - x^(2 i))^4*(1 - x^(3 i))^3/((1 - x^i)^12*(1 - x^(6 i))), {i, n}], {x, 0, n}], {n, 0, 25}] (* Michael De Vlieger, Mar 01 2017 *)

Formula

G.f.: Product_{n>=1} (1 - x^(2*n))^4 * (1 - x^(3*n))^3/((1 - x^n)^12 * (1 - x^(6*n))).
a(n) = (1/n)*Sum_{k=1..n} sigma(6*k)*a(n-k). - Seiichi Manyama, Mar 05 2017
a(n) ~ 55^(7/4) * exp(sqrt(55*n)*Pi/3) / (41472*sqrt(3)*n^(9/4)). - Vaclav Kotesovec, Mar 20 2017

A283120 Expansion of exp( Sum_{n>=1} sigma(8*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 15, 128, 815, 4289, 19663, 81057, 306799, 1081986, 3594142, 11338690, 34193246, 99080387, 277046893, 750192227, 1973050940, 5053026949, 12628736331, 30859262181, 73849589786, 173333118663, 399528823032, 905418038792, 2019454523623, 4437187104779
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Examples

			G.f.: A(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 + ...
log(A(x)) = 15*x + 31*x^2/2 + 60*x^3/3 + 63*x^4/4 + 90*x^5/5 + 124*x^6/6 + 120*x^7/7 + 127*x^8/8 + ... + sigma(8*n)*x^n/n + ...
		

Crossrefs

Cf. A283122 (sigma(8*n)), A283168 (exp( Sum_{n>=1} -sigma(8*n)*x^n/n )).
Cf. A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), A283119 (k=6), A283077 (k=7), this sequence (k=8), A283121 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^(2*n))^7/(1 - x^n)^15.
a(n) = (1/n)*Sum_{k=1..n} sigma(8*k)*a(n-k). - Seiichi Manyama, Mar 05 2017
a(n) ~ 529 * 23^(1/4) * exp(sqrt(23*n/3)*Pi) / (73728 * 3^(1/4) * n^(11/4)). - Vaclav Kotesovec, Mar 20 2017

A283121 Expansion of exp( Sum_{n>=1} sigma(9*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 13, 104, 633, 3224, 14404, 58151, 216294, 751582, 2464860, 7689669, 22961822, 65955677, 182985947, 492016590, 1285829996, 3274100475, 8139933477, 19795490575, 47165634583, 110259083454, 253208634687, 571880965638, 1271549402110, 2785836824325, 6019078365425
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Examples

			G.f.: A(x) = 1 + 13*x + 104*x^2 + 633*x^3 + 3224*x^4 + 14404*x^5 + ...
log(A(x)) = 13*x + 39*x^2/2 + 40*x^3/3 + 91*x^4/4 + 78*x^5/5 + 120*x^6/6 + 104*x^7/7 + 195*x^8/8 + ... + sigma(9*n)*x^n/n + ...
		

Crossrefs

Cf. A283123 (sigma(9*n)), A283169 (exp( Sum_{n>=1} -sigma(9*n)*x^n/n )).
Cf. A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), A283119 (k=6), A283077 (k=7), A283120 (k=8), this sequence (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))^4/(1 - x^n)^13.
a(n) = (1/n)*Sum_{k=1..n} sigma(9*k)*a(n-k). - Seiichi Manyama, Mar 05 2017
a(n) ~ 1225 * sqrt(35) * exp(sqrt(70*n)*Pi/3) / (559872*n^3). - Vaclav Kotesovec, Mar 20 2017

A298311 Expansion of Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).

Original entry on oeis.org

1, 3, 7, 16, 32, 61, 112, 197, 336, 560, 912, 1456, 2287, 3536, 5392, 8123, 12096, 17824, 26016, 37632, 53984, 76848, 108601, 152432, 212592, 294704, 406201, 556864, 759488, 1030784, 1392496, 1872784, 2508048, 3345184, 4444384, 5882747, 7758736, 10197712, 13358944, 17444256, 22708719
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 17 2018

Keywords

Comments

Number of partitions of n where there are 3 kinds of odd parts.
Convolution of the sequences A000009 and A015128.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2 k)) (1 - x^(2 k - 1))^3), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)^2/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).
G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^k).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2^(5/2)*sqrt(3)*n). - Vaclav Kotesovec, Apr 08 2018
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 4. Cf. A000041 (k = 1), A015128 (k = 2), A278690 (k = 3) and A160461 (k = 5). - Peter Bala, Nov 17 2020

A203321 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n*k)*x^(n*k)/k ).

Original entry on oeis.org

1, 3, 7, 19, 26, 75, 78, 211, 241, 518, 463, 1447, 1002, 2558, 2612, 5715, 3928, 11901, 7316, 21574, 17031, 35159, 23047, 80575, 40951, 108488, 86911, 206638, 107823, 370220, 173725, 570803, 372181, 816496, 451883, 1723741, 665150, 2048982, 1404150, 3705366, 1530859, 5892479
Offset: 1

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 26*x^5/5 + 75*x^6/6 +...
where
L(x) = x*exp(1*x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 +...) +
x^2/2*exp(3*x^2 + 7*x^4/2 + 12*x^6/3 + 15*x^8/4 + 18*x^10/5 +...) +
x^3/3*exp(4*x^3 + 12*x^6/2 + 13*x^9/3 + 28*x^12/4 + 24*x^15/5 +...) +
x^4/4*exp(7*x^4 + 15*x^8/2 + 28*x^12/3 + 31*x^16/4 + 42*x^20/5 +...) +
x^5/5*exp(6*x^5 + 18*x^10/2 + 24*x^15/3 + 42*x^20/4 + 31*x^25/5 +...) +
x^6/6*exp(12*x^6 + 28*x^12/2 + 39*x^18/3 + 60*x^24/4 + 72*x^30/5 +...) +
x^7/7*exp(8*x^7 + 24*x^14/2 + 32*x^21/3 + 56*x^28/4 + 48*x^35/5 +...) +
x^8/8*exp(15*x^8 + 31*x^16/2 + 60*x^24/3 + 63*x^32/4 + 90*x^40/5 +...) +...
...
Equivalently, L(x) = Sum_{n>=1} P_n(x^n) * x^n/n where
P_n(x) = exp( Sum_{k>=1} sigma(n*k)*x^k/k ), which begin:
P_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...;
P_2(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...;
P_3(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 + 533*x^6 +...;
P_4(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 + 3057*x^6 +...;
P_5(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + 2486*x^6 +...;
P_6(x) = 1 + 12*x + 86*x^2 + 469*x^3 + 2141*x^4 + 8594*x^5 +...;
P_7(x) = 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 +...;
P_8(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 +...;
...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(max(n,1), i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), sigma(m*k)*x^(m*k)/k)+x*O(x^n))))); if(n<1,0,L[n])}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),P=exp(sum(k=1,n,sigma(k)*x^k/k)+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(P, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); n*polcoeff(log(A), n)}

Formula

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * P_n(x^n) where P_n(x^n) = Product_{k=0..n-1} P(u^k*x) where u is an n-th root of unity, and P(x) is the partition function (A000041); P(x) = exp(Sum_{n>=1} sigma(n)*x^n/n) where sigma(n) is the sum of divisors of n (A000203).
Showing 1-10 of 17 results. Next