cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356032 Decimal expansion of the positive real root of x^4 + x - 1.

Original entry on oeis.org

7, 2, 4, 4, 9, 1, 9, 5, 9, 0, 0, 0, 5, 1, 5, 6, 1, 1, 5, 8, 8, 3, 7, 2, 2, 8, 2, 1, 8, 7, 0, 3, 6, 5, 6, 5, 7, 8, 6, 4, 9, 4, 4, 8, 1, 3, 5, 0, 0, 1, 1, 0, 1, 7, 2, 7, 0, 3, 9, 8, 0, 2, 8, 4, 3, 7, 4, 5, 2, 9, 0, 6, 4, 7, 5, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 27 2022

Keywords

Comments

The other real (negative) root is -A060007.
One of the pair of complex conjugate roots is obtained by negating sqrt(2*u) and sqrt(u) in the formula for r below, giving 0.248126062... - 1.033982060...*i.
Also, the absolute value of the negative real root of x^4 - x - 1, cf. A060007. - M. F. Hasler, Jul 12 2025

Examples

			r = 0.724491959000515611588372282187036565786494481350011017270...
		

Crossrefs

Cf. A060007 (positive root of x^4 - x - 1), A072223, A086106, A202538, A376658.

Programs

  • Mathematica
    First[RealDigits[x/.N[{x->Root[-1+#1+#1^4 &,2,0]},75]]] (* Stefano Spezia, Aug 27 2022 *)
  • PARI
    solve(x=0, 1, x^4 + x - 1) \\ Michel Marcus, Aug 28 2022
    
  • PARI
    polrootsreal(x^4 + x - 1)[2] \\ M. F. Hasler, Jul 12 2025

Formula

r = (-sqrt(2)*u + sqrt(sqrt(2*u) - 2*u^2))/(2*sqrt(u)), with u = (Ap^(1/3) + ep*Am^(1/3))/3, where Ap = (3/16)*(9 + sqrt(3*283)), Am = (3/16)*(9 - sqrt(3*283)) and ep = (-1 + sqrt(3)*i)/2, with i = sqrt(-1). For the trigonometric version set u = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/16)* sqrt(3))).
Equals sqrt(A072223) = 1/A086106 = 1/exp(A202538). - Hugo Pfoertner, Jul 13 2025